1: Luo YS, Furuya S, Soldatov VY, Kosyk O, Yoo HS, Fukushima H, Lewis L, Iwata Y, Rusyn I. Metabolism and Toxicity of Trichloroethylene and Tetrachloroethylene in Cytochrome P450 2E1 Knockout and Humanized Transgenic Mice. Toxicol Sci. 2018 Apr 20. doi: 10.1093/toxsci/kfy099. [Epub ahead of print] PubMed PMID: 29897530.
2: Zhao TT, He Z, Zhang LJ, Xing ZL, Gao YH, Peng XY. [Influence of methane and trichloroethylene domestication on bacterial community structure in landfill cover soil.]. Ying Yong Sheng Tai Xue Bao. 2017 May 18;28(5):1707-1715. doi: 10.13287/j.1001-9332.201705.012. Chinese. PubMed PMID: 29745210.
3: Toyooka T, Yanagiba Y, Ibuki Y, Wang RS. Trichloroethylene exposure results in the phosphorylation of histone H2AX in a human hepatic cell line through cytochrome P450 2E1-mediated oxidative stress. J Appl Toxicol. 2018 May 3. doi: 10.1002/jat.3632. [Epub ahead of print] PubMed PMID: 29722447.
4: Liu B, Zhang H, Lu Q, Li G, Zhang F. A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE). Sci Total Environ. 2018 Sep 1;635:1417-1425. doi: 10.1016/j.scitotenv.2018.04.238. Epub 2018 Apr 25. PubMed PMID: 29710594.
5: Blossom SJ, Fernandes L, Bai S, Khare S, Gokulan K, Yuan Y, Dewall M, Simmen FA, Gilbert KM. Opposing actions of developmental trichloroethylene and high-fat-diet co-exposure on markers of lipogenesis and inflammation in autoimmune-prone mice. Toxicol Sci. 2018 Apr 12. doi: 10.1093/toxsci/kfy091. [Epub ahead of print] PubMed PMID: 29669109.
6: Kang YJ, Lee J, Ahn J, Park S, Shin MY, Lee HW. Trichloroethylene Hypersensitivity Syndrome: Should Be Considered When Diagnosing DRESS Syndrome. J Korean Med Sci. 2018 Apr 2;33(14):e106. doi: 10.3346/jkms.2018.33.e106. PubMed PMID: 29607632; PubMed Central PMCID: PMC5879037.
7: Zhang J, Li N, Yang L, Zang D, Yang P, Wang H, Shen T, Zhu QX. Role of selective blocking of bradykinin B1 receptor in attenuating immune liver injury in trichloroethylene-sensitized mice. Cytokine. 2018 Aug;108:71-81. doi: 10.1016/j.cyto.2018.03.024. Epub 2018 Mar 27. PubMed PMID: 29579546.
8: Lu W, Chen Z, Ren X, Liu W, Deng R, Yuan J, Huang X, Zhu W, Liu J. SET promotes H2Ak9 acetylation by suppressing HDAC1 in trichloroethylene-induced hepatic cytotoxicity. Environ Toxicol Pharmacol. 2018 Apr;59:125-131. doi: 10.1016/j.etap.2018.03.011. Epub 2018 Mar 17. PubMed PMID: 29579541.
9: Fu X, Dionysiou DD, Brusseau ML, Zaman WQ, Zang X, Lu S, Qiu Z, Sui Q. Enhanced effect of EDDS and hydroxylamine on Fe(II)-catalyzed SPC system for trichloroethylene degradation. Environ Sci Pollut Res Int. 2018 Jun;25(16):15733-15742. doi: 10.1007/s11356-018-1708-9. Epub 2018 Mar 25. PubMed PMID: 29574649.
10: Li SL, Yu Y, Yang P, Wang H, Zhang C, Liu M, Zhang JX, Shen T, Wu C, Zhu QX. Trichloroethylene Alters Th1/Th2/Th17/Treg Paradigm in Mice: A Novel Mechanism for Chemically Induced Autoimmunity. Int J Toxicol. 2018 Mar/Apr;37(2):155-163. doi: 10.1177/1091581818757036. Epub 2018 Mar 19. PubMed PMID: 29554824.
11: Liu M, Wang H, Zhang J, Yang X, Li B, Wu C, Zhu Q. NF-κB signaling pathway-enhanced complement activation mediates renal injury in trichloroethylene-sensitized mice. J Immunotoxicol. 2018 Dec;15(1):63-72. doi: 10.1080/1547691X.2017.1420712. PubMed PMID: 29534626.
12: Zhang C, Yu Y, Yu JF, Li BD, Zhou CF, Yang XD, Wang X, Wu C, Shen T, Zhu QX. Viral mimic polyinosine-polycytidylic acid potentiates liver injury in trichloroethylene-sensitized mice - Viral-chemical interaction as a novel mechanism. Ecotoxicol Environ Saf. 2018 Jul 15;155:101-108. doi: 10.1016/j.ecoenv.2018.02.056. Epub 2018 Mar 3. PubMed PMID: 29510304.
13: Nakajima T, Wang H, Ito Y, Naito H, Wang D, Zhao N, Li H, Qiu X, Xia L, Chen J, Wu Q, Li L, Huang H, Kamijima M. Exposure reconstruction of trichloroethylene among patients with occupational trichloroethylene hypersensitivity syndrome. Ind Health. 2018 Mar 3. doi: 10.2486/indhealth.2017-0202. [Epub ahead of print] PubMed PMID: 29503390.
14: Xueqin Y, Wenxue L, Peimao L, Wen Z, Xianqing H, Zhixiong Z. Cytokine expression and cytokine-based T-cell profiling in occupational medicamentosa-like dermatitis due to trichloroethylene. Toxicol Lett. 2018 May 15;288:129-135. doi: 10.1016/j.toxlet.2018.02.012. Epub 2018 Feb 22. PubMed PMID: 29477354.
15: Kim JK, Ahn H, Kim JH, Ban YJ, Kim K, Joo JC. Preparation of Nanoscale Zinc Oxide-Laponite Composites by Polyvinyl Alcohol Polymerization and Usability for Removal of Trichloroethylene in Water. J Nanosci Nanotechnol. 2018 Mar 1;18(3):2109-2112. doi: 10.1166/jnn.2018.14940. PubMed PMID: 29448723.
16: Dong H, Zhang C, Deng J, Jiang Z, Zhang L, Cheng Y, Hou K, Tang L, Zeng G. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res. 2018 May 15;135:1-10. doi: 10.1016/j.watres.2018.02.017. Epub 2018 Feb 7. PubMed PMID: 29438739.
17: He CB, Pan KL, Chang MB. Catalytic oxidation of trichloroethylene from gas streams by perovskite-type catalysts. Environ Sci Pollut Res Int. 2018 Apr;25(12):11584-11594. doi: 10.1007/s11356-018-1440-5. Epub 2018 Feb 10. PubMed PMID: 29429106.
18: Gu M, Farooq U, Lu S, Zhang X, Qiu Z, Sui Q. Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments. J Hazard Mater. 2018 May 5;349:35-44. doi: 10.1016/j.jhazmat.2018.01.037. Epub 2018 Jan 31. PubMed PMID: 29414750.
19: Dumas O, Despreaux T, Perros F, Lau E, Andujar P, Humbert M, Montani D, Descatha A. Respiratory effects of trichloroethylene. Respir Med. 2018 Jan;134:47-53. doi: 10.1016/j.rmed.2017.11.021. Epub 2017 Dec 1. Review. PubMed PMID: 29413507.
20: Wikoff D, Urban JD, Harvey S, Haws LC. Role of Risk of Bias in Systematic Review for Chemical Risk Assessment: A Case Study in Understanding the Relationship Between Congenital Heart Defects and Exposures to Trichloroethylene. Int J Toxicol. 2018 Mar/Apr;37(2):125-143. doi: 10.1177/1091581818754330. Epub 2018 Jan 22. PubMed PMID: 29357719; PubMed Central PMCID: PMC5888777.