MedKoo Cat#: 596070 | Name: Dihydroxyphenylglycine
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Dihydroxyphenylglycine is a potent agonist of group I metabotropic glutamate receptors (mGluRs) mGluR1 and mGluR5.

Chemical Structure

Dihydroxyphenylglycine
CAS#162870-29-3

Theoretical Analysis

MedKoo Cat#: 596070

Name: Dihydroxyphenylglycine

CAS#: 162870-29-3

Chemical Formula: C8H9NO4

Exact Mass: 183.0530

Molecular Weight: 183.16

Elemental Analysis: C, 52.46; H, 4.95; N, 7.65; O, 34.94

Price and Availability

Size Price Availability Quantity
5mg USD 350.00 2 Weeks
10mg USD 650.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Dihydroxyphenylglycine; DHPG; S-DHPG; (S)-3,5-DHPG;
IUPAC/Chemical Name
(S)-2-amino-2-(3,5-dihydroxyphenyl)acetic acid
InChi Key
HOOWCUZPEFNHDT-ZETCQYMHSA-N
InChi Code
InChI=1S/C8H9NO4/c9-7(8(12)13)4-1-5(10)3-6(11)2-4/h1-3,7,10-11H,9H2,(H,12,13)/t7-/m0/s1
SMILES Code
O=C(O)[C@@H](N)C1=CC(O)=CC(O)=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
A selective agonist of group I mGluRs.
In vitro activity:
While pressure ejection of the group I mGluR (mGluR1/5) agonist DHPG [(S)-3,5-dihydroxyphenylglycine] equally engages both mGluR1 and mGluR5 subtypes, the mGluR-dependent component of IPSCs elicited by intrastriatal electrical stimulation is almost exclusively mediated by the mGluR1 subtype. Reference: J Neurosci. 2013 Feb 6;33(6):2697-708. https://pubmed.ncbi.nlm.nih.gov/23392696/
In vivo activity:
After treating the astrocytes from the EC and hippocampus of non-Tg and 3xTg-AD mice with 100 nM Aβ1-42 oligomers, cells were loaded with the calcium probe Fluo4-AM, and their responses to 100 nM DHPG (15 s) were analyzed. Figures 3a and b show representative traces of DHPG-induced Ca2+ responses in astrocytes derived from the hippocampus and EC of non-Tg and 3xTg-AD mice. Treatment with Aβ significantly increased the amplitude of DHPG-responses in hippocampal astrocytes when compared with control. Reference: Cell Death Dis. 2013 May 9;4(5):e623. https://pubmed.ncbi.nlm.nih.gov/23661001/
Solvent mg/mL mM comments
Solubility
DMSO 20.0 99.41
PBS (pH 7.2) 20.0 99.41
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 183.16 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Clements MA, Swapna I, Morikawa H. Inositol 1,4,5-triphosphate drives glutamatergic and cholinergic inhibition selectively in spiny projection neurons in the striatum. J Neurosci. 2013 Feb 6;33(6):2697-708. doi: 10.1523/JNEUROSCI.4759-12.2013. PMID: 23392696; PMCID: PMC3572919. 2. Durakoglugil MS, Wasser CR, Wong CH, Pohlkamp T, Xian X, Lane-Donovan C, Fritschle K, Naestle L, Herz J. Reelin Regulates Neuronal Excitability through Striatal-Enriched Protein Tyrosine Phosphatase (STEP61) and Calcium Permeable AMPARs in an NMDAR-Dependent Manner. J Neurosci. 2021 Sep 1;41(35):7340-7349. doi: 10.1523/JNEUROSCI.0388-21.2021. Epub 2021 Jul 21. PMID: 34290083; PMCID: PMC8412985. 3. Grolla AA, Sim JA, Lim D, Rodriguez JJ, Genazzani AA, Verkhratsky A. Amyloid-β and Alzheimer's disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis. 2013 May 9;4(5):e623. doi: 10.1038/cddis.2013.145. PMID: 23661001; PMCID: PMC3674354. 4. Zho WM, You JL, Huang CC, Hsu KS. The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J Neurosci. 2002 Oct 15;22(20):8838-49. doi: 10.1523/JNEUROSCI.22-20-08838.2002. PMID: 12388590; PMCID: PMC6757695.
In vitro protocol:
1. Clements MA, Swapna I, Morikawa H. Inositol 1,4,5-triphosphate drives glutamatergic and cholinergic inhibition selectively in spiny projection neurons in the striatum. J Neurosci. 2013 Feb 6;33(6):2697-708. doi: 10.1523/JNEUROSCI.4759-12.2013. PMID: 23392696; PMCID: PMC3572919. 2. Durakoglugil MS, Wasser CR, Wong CH, Pohlkamp T, Xian X, Lane-Donovan C, Fritschle K, Naestle L, Herz J. Reelin Regulates Neuronal Excitability through Striatal-Enriched Protein Tyrosine Phosphatase (STEP61) and Calcium Permeable AMPARs in an NMDAR-Dependent Manner. J Neurosci. 2021 Sep 1;41(35):7340-7349. doi: 10.1523/JNEUROSCI.0388-21.2021. Epub 2021 Jul 21. PMID: 34290083; PMCID: PMC8412985.
In vivo protocol:
1. Grolla AA, Sim JA, Lim D, Rodriguez JJ, Genazzani AA, Verkhratsky A. Amyloid-β and Alzheimer's disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis. 2013 May 9;4(5):e623. doi: 10.1038/cddis.2013.145. PMID: 23661001; PMCID: PMC3674354. 2. Zho WM, You JL, Huang CC, Hsu KS. The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J Neurosci. 2002 Oct 15;22(20):8838-49. doi: 10.1523/JNEUROSCI.22-20-08838.2002. PMID: 12388590; PMCID: PMC6757695.
1: Al Toma RS, Brieke C, Cryle MJ, Süssmuth RD. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Nat Prod Rep. 2015 Aug;32(8):1207-35. doi: 10.1039/c5np00025d. Review. PubMed PMID: 25940955. 2: Lederman YS, Balucani C, Lazar J, Steinberg L, Gugger J, Levine SR. Relationship between QT interval dispersion in acute stroke and stroke prognosis: a systematic review. J Stroke Cerebrovasc Dis. 2014 Nov-Dec;23(10):2467-78. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.004. Epub 2014 Oct 3. Review. PubMed PMID: 25282188; PubMed Central PMCID: PMC4256166. 3: Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis. 2014 Jan;61:55-71. doi: 10.1016/j.nbd.2013.09.013. Epub 2013 Sep 27. Review. PubMed PMID: 24076101; PubMed Central PMCID: PMC3875303. 4: Rahn EJ, Guzman-Karlsson MC, David Sweatt J. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory. Neurobiol Learn Mem. 2013 Oct;105:133-50. doi: 10.1016/j.nlm.2013.06.008. Epub 2013 Jun 22. Review. PubMed PMID: 23796633; PubMed Central PMCID: PMC3769437. 5: Hong I, Kim J, Song B, Park S, Lee J, Kim J, An B, Lee S, Choi S. Modulation of fear memory by retrieval and extinction: a clue for memory deconsolidation. Rev Neurosci. 2011;22(2):205-29. doi: 10.1515/RNS.2011.023. Review. PubMed PMID: 21476941. 6: Rendu F, Peoc'h K, Berlin I, Thomas D, Launay JM. Smoking related diseases: the central role of monoamine oxidase. Int J Environ Res Public Health. 2011 Jan;8(1):136-47. doi: 10.3390/ijerph8010136. Epub 2011 Jan 14. Review. PubMed PMID: 21318020; PubMed Central PMCID: PMC3037066. 7: Gladding CM, Fitzjohn SM, Molnár E. Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev. 2009 Dec;61(4):395-412. doi: 10.1124/pr.109.001735. Epub 2009 Nov 19. Review. PubMed PMID: 19926678; PubMed Central PMCID: PMC2802426. 8: Mao LM, Zhang GC, Liu XY, Fibuch EE, Wang JQ. Group I metabotropic glutamate receptor-mediated gene expression in striatal neurons. Neurochem Res. 2008 Oct;33(10):1920-4. doi: 10.1007/s11064-008-9654-4. Epub 2008 Mar 20. Review. PubMed PMID: 18351459. 9: Baskys A, Bayazitov I, Zhu E, Fang L, Wang R. Rab-mediated endocytosis: linking neurodegeneration, neuroprotection, and synaptic plasticity? Ann N Y Acad Sci. 2007 Dec;1122:313-29. Review. PubMed PMID: 18077583. 10: Goldstein DS, Eisenhofer G, Kopin IJ. Clinical catecholamine neurochemistry: a legacy of Julius Axelrod. Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):695-702. Epub 2006 Jul 27. Review. PubMed PMID: 16871444. 11: Baskys A, Fang L, Bayazitov I. Activation of neuroprotective pathways by metabotropic group I glutamate receptors: a potential target for drug discovery? Ann N Y Acad Sci. 2005 Aug;1053:55-73. Review. PubMed PMID: 16179509. 12: Baskys A, Blaabjerg M. Understanding regulation of nerve cell death by mGluRs as a method for development of successful neuroprotective strategies. J Neurol Sci. 2005 Mar 15;229-230:201-9. Epub 2004 Dec 15. Review. PubMed PMID: 15760640. 13: Moldrich RX, Chapman AG, De Sarro G, Meldrum BS. Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol. 2003 Aug 22;476(1-2):3-16. Review. PubMed PMID: 12969743. 14: Wiśniewski K, Car H. (S)-3,5-DHPG: a review. CNS Drug Rev. 2002 Spring;8(1):101-16. Review. PubMed PMID: 12070529. 15: Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ. Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7101-6. Review. PubMed PMID: 11416194; PubMed Central PMCID: PMC34629. 16: Esler M, Lambert G, Vaz M, Thompson J, Kaye D, Kalff V, Kelly M, Turner A, Jennings G. Central nervous system monoamine neurotransmitter turnover in primary and obesity-related human hypertension. Clin Exp Hypertens. 1997 Jul-Aug;19(5-6):577-90. Review. PubMed PMID: 9247740. 17: Goldstein DS. Clinical assessment of sympathetic responses to stress. Ann N Y Acad Sci. 1995 Dec 29;771:570-93. Review. PubMed PMID: 8597432. 18: Esler M. Clinical application of noradrenaline spillover methodology: delineation of regional human sympathetic nervous responses. Pharmacol Toxicol. 1993 Nov;73(5):243-53. Review. PubMed PMID: 8115306. 19: Vanhoutte PM. Cardiovascular pharmacology of buflomedil. Bibl Cardiol. 1984;(38):209-21. Review. PubMed PMID: 6398070. 20: Kohno Y. [Regional characteristics of noradrenaline turnover as reflected in the brain levels of MHPG-SO4]. Nihon Yakurigaku Zasshi. 1983 Mar;81(3):175-92. Review. Japanese. PubMed PMID: 6345303.