MedKoo Cat#: 571590 | Name: Naptalam
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Naptalam is an herbicide.

Chemical Structure

Naptalam
Naptalam
CAS#132-66-1

Theoretical Analysis

MedKoo Cat#: 571590

Name: Naptalam

CAS#: 132-66-1

Chemical Formula: C18H13NO3

Exact Mass: 291.0895

Molecular Weight: 291.31

Elemental Analysis: C, 74.22; H, 4.50; N, 4.81; O, 16.48

Price and Availability

Size Price Availability Quantity
100mg USD 230.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
NSC 204421; NSC204421; NSC-204421
IUPAC/Chemical Name
Benzoic acid, 2-((1-naphthalenylamino)carbonyl)- (9CI)
InChi Key
JXTHEWSKYLZVJC-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H13NO3/c20-17(14-9-3-4-10-15(14)18(21)22)19-16-11-5-7-12-6-1-2-8-13(12)16/h1-11H,(H,19,20)(H,21,22)
SMILES Code
O=C(O)C1=CC=CC=C1C(NC2=C3C=CC=CC3=CC=C2)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
N-1-Naphthylphthalamic acid is a polar auxin transport inhibitor.
In vitro activity:
Here this study presents cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. Reference: Nature. 2022 Sep;609(7927):616-621. https://pubmed.ncbi.nlm.nih.gov/35917926/
In vivo activity:
This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. Reference: Plant J. 1998 Feb;13(3):291-301. https://pubmed.ncbi.nlm.nih.gov/11536873/
Solvent mg/mL mM
Solubility
DMF 25.0 85.82
DMF:PBS (pH 7.2) (1:3) 0.3 0.86
DMSO 24.2 82.95
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 291.31 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Su N, Zhu A, Tao X, Ding ZJ, Chang S, Ye F, Zhang Y, Zhao C, Chen Q, Wang J, Zhou CY, Guo Y, Jiao S, Zhang S, Wen H, Ma L, Ye S, Zheng SJ, Yang F, Wu S, Guo J. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature. 2022 Sep;609(7927):616-621. doi: 10.1038/s41586-022-05142-w. Epub 2022 Aug 2. Erratum in: Nature. 2022 Oct;610(7930):E2. PMID: 35917926. 2. Marasek-Ciolakowska A, Dziurka M, Kowalska U, Góraj-Koniarska J, Saniewski M, Ueda J, Miyamoto K. Mode of Action of 1-Naphthylphthalamic Acid in Conspicuous Local Stem Swelling of Succulent Plant, Bryophyllum calycinum: Relevance to the Aspects of Its Histological Observation and Comprehensive Analyses of Plant Hormones. Int J Mol Sci. 2021 Mar 18;22(6):3118. doi: 10.3390/ijms22063118. PMID: 33803750; PMCID: PMC8003132. 3. Butler JH, Hu S, Brady SR, Dixon MW, Muday GK. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls. Plant J. 1998 Feb;13(3):291-301. doi: 10.1046/j.1365-313x.1998.00017.x. PMID: 11536873.
In vitro protocol:
1. Su N, Zhu A, Tao X, Ding ZJ, Chang S, Ye F, Zhang Y, Zhao C, Chen Q, Wang J, Zhou CY, Guo Y, Jiao S, Zhang S, Wen H, Ma L, Ye S, Zheng SJ, Yang F, Wu S, Guo J. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature. 2022 Sep;609(7927):616-621. doi: 10.1038/s41586-022-05142-w. Epub 2022 Aug 2. Erratum in: Nature. 2022 Oct;610(7930):E2. PMID: 35917926. 2. Marasek-Ciolakowska A, Dziurka M, Kowalska U, Góraj-Koniarska J, Saniewski M, Ueda J, Miyamoto K. Mode of Action of 1-Naphthylphthalamic Acid in Conspicuous Local Stem Swelling of Succulent Plant, Bryophyllum calycinum: Relevance to the Aspects of Its Histological Observation and Comprehensive Analyses of Plant Hormones. Int J Mol Sci. 2021 Mar 18;22(6):3118. doi: 10.3390/ijms22063118. PMID: 33803750; PMCID: PMC8003132.
In vivo protocol:
1. Butler JH, Hu S, Brady SR, Dixon MW, Muday GK. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls. Plant J. 1998 Feb;13(3):291-301. doi: 10.1046/j.1365-313x.1998.00017.x. PMID: 11536873.
1: Ferreira MC, Cantrell CL, Duke SO, Ali A, Rosa LH. New Pesticidal Diterpenoids from Vellozia gigantea (Velloziaceae), an Endemic Neotropical Plant Living in the Endangered Brazilian Biome Rupestrian Grasslands. Molecules. 2017 Jan 21;22(1). pii: E175. doi: 10.3390/molecules22010175. PubMed PMID: 28117710. 2: Jiu S, Wang C, Zheng T, Liu Z, Leng X, Pervaiz T, Lotfi A, Fang J, Wang X. Characterization of VvPAL-like promoter from grapevine using transgenic tobacco plants. Funct Integr Genomics. 2016 Nov;16(6):595-617. Epub 2016 Aug 25. PubMed PMID: 27562678. 3: Majumdar A, Kar RK. Integrated role of ROS and Ca(+2) in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle. Protoplasma. 2016 Nov;253(6):1529-1539. Epub 2015 Nov 16. PubMed PMID: 26573536. 4: Tanaka R, Amijima M, Iwata Y, Koizumi N, Mishiba KI. Effect of light and auxin transport inhibitors on endoreduplication in hypocotyl and cotyledon. Plant Cell Rep. 2016 Dec;35(12):2539-2547. Epub 2016 Sep 16. PubMed PMID: 27637202. 5: Foo E, McAdam EL, Weller JL, Reid JB. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J Exp Bot. 2016 Apr;67(8):2413-24. doi: 10.1093/jxb/erw047. Epub 2016 Feb 17. PubMed PMID: 26889005; PubMed Central PMCID: PMC4809293. 6: Kim HJ, Kobayashi A, Fujii N, Miyazawa Y, Takahashi H. Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots. Physiol Plant. 2016 May;157(1):108-18. doi: 10.1111/ppl.12406. Epub 2016 Mar 3. PubMed PMID: 26565659. 7: Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang de A, Qi Y. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J. 2015 Sep;83(5):818-30. doi: 10.1111/tpj.12929. Epub 2015 Jul 22. PubMed PMID: 26140668. 8: Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport. Plant Physiol. 2015 Aug;168(4):1820-9. doi: 10.1104/pp.15.00014. Epub 2015 Jun 25. PubMed PMID: 26111543; PubMed Central PMCID: PMC4528729. 9: Rodríguez-Sanz H, Solís MT, López MF, Gómez-Cadenas A, Risueño MC, Testillano PS. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus. Plant Cell Physiol. 2015 Jul;56(7):1401-17. doi: 10.1093/pcp/pcv058. Epub 2015 Apr 22. PubMed PMID: 25907568. 10: Qing XD, Wu HL, Zhang XH, Li Y, Gu HW, Yu RQ. A novel fourth-order calibration method based on alternating quinquelinear decomposition algorithm for processing high performance liquid chromatography-diode array detection- kinetic-pH data of naptalam hydrolysis. Anal Chim Acta. 2015 Feb 25;861:12-24. doi: 10.1016/j.aca.2014.12.037. Epub 2014 Dec 24. PubMed PMID: 25702270. 11: Ma C, Meir S, Xiao L, Tong J, Liu Q, Reid MS, Jiang CZ. A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway. Plant Physiol. 2015 Mar;167(3):844-53. doi: 10.1104/pp.114.253815. Epub 2015 Jan 5. PubMed PMID: 25560879; PubMed Central PMCID: PMC4348773. 12: Wang Y, M Folta K. Phototropin 1 and dim-blue light modulate the red light de-etiolation response. Plant Signal Behav. 2014;9(11):e976158. doi: 10.4161/15592324.2014.976158. PubMed PMID: 25482790; PubMed Central PMCID: PMC4623486. 13: Bennett TA, Liu MM, Aoyama T, Bierfreund NM, Braun M, Coudert Y, Dennis RJ, O'Connor D, Wang XY, White CD, Decker EL, Reski R, Harrison CJ. Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr Biol. 2014 Dec 1;24(23):2776-85. doi: 10.1016/j.cub.2014.09.054. Epub 2014 Nov 13. PubMed PMID: 25448003; PubMed Central PMCID: PMC4251699. 14: Yoneyama K, Kisugi T, Xie X, Arakawa R, Ezawa T, Nomura T, Yoneyama K. Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta. 2015 Mar;241(3):687-98. doi: 10.1007/s00425-014-2208-x. Epub 2014 Nov 23. PubMed PMID: 25417194. 15: Li N, Sun L, Zhang L, Song Y, Hu P, Li C, Hao FS. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. Planta. 2015 Mar;241(3):591-602. doi: 10.1007/s00425-014-2204-1. Epub 2014 Nov 16. PubMed PMID: 25399352. 16: Zaban B, Liu W, Jiang X, Nick P. Plant cells use auxin efflux to explore geometry. Sci Rep. 2014 Jul 28;4:5852. doi: 10.1038/srep05852. PubMed PMID: 25068254; PubMed Central PMCID: PMC5376164. 17: Moni A, Lee AY, Briggs WR, Han IS. The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation. Plant Biol (Stuttg). 2015 Jan;17(1):34-40. doi: 10.1111/plb.12187. Epub 2014 May 6. PubMed PMID: 24803136. 18: Balanzà V, Ballester P, Colombo M, Fourquin C, Martínez-Fernández I, Ferrándiz C. Genetic and phenotypic analyses of carpel development in Arabidopsis. Methods Mol Biol. 2014;1110:231-49. doi: 10.1007/978-1-4614-9408-9_11. PubMed PMID: 24395260. 19: Lin Y, Zhang W, Qi F, Cui W, Xie Y, Shen W. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J Plant Physiol. 2014 Jan 15;171(2):1-8. doi: 10.1016/j.jplph.2013.08.009. Epub 2013 Nov 14. PubMed PMID: 24331413. 20: Schnaubelt D, Queval G, Dong Y, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA, Foyer CH. Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ. 2015 Feb;38(2):266-79. doi: 10.1111/pce.12252. Epub 2014 Jan 13. PubMed PMID: 24329757.