MedKoo Cat#: 571543 | Name: Oxyphenisatin Acetate
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Oxphenisatin Acetate inhibits the growth of breast cancer cells by inhibiting translation, rapid phosphorylation. The pathways involved in apoptosis induction, starvation responses, and RNA/protein metabolism. Oxphenisatin Acetate also results in mitochondrial dysfunction.

Chemical Structure

Oxyphenisatin Acetate
Oxyphenisatin Acetate
CAS#115-33-3

Theoretical Analysis

MedKoo Cat#: 571543

Name: Oxyphenisatin Acetate

CAS#: 115-33-3

Chemical Formula: C24H19NO5

Exact Mass: 401.1263

Molecular Weight: 401.42

Elemental Analysis: C, 71.81; H, 4.77; N, 3.49; O, 19.93

Price and Availability

Size Price Availability Quantity
250mg USD 220.00
1g USD 380.00
5g USD 720.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Acetophenolisatin; NSC 117186; NSC-117186; NSC117186; NSC 59687; NSC-59687; NSC59687
IUPAC/Chemical Name
2-Indolinone, 3,3-bis(p-hydroxyphenyl)-, diacetate
InChi Key
PHPUXYRXPHEJDF-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H19NO5/c1-15(26)29-19-11-7-17(8-12-19)24(18-9-13-20(14-10-18)30-16(2)27)21-5-3-4-6-22(21)25-23(24)28/h3-14H,1-2H3,(H,25,28)
SMILES Code
O=C1NC2=C(C=CC=C2)C1(C3=CC=C(OC(C)=O)C=C3)C4=CC=C(OC(C)=O)C=C4
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Oxyphenisatin acetate, the pro-drug of oxyphenisatin, is used to be a laxative.
In vitro activity:
Results confirm that OXY (oxyphenisatin) inhibits the growth of the breast cancer cell lines MCF7, T47D, HS578T, and MDA-MB-468. Further examination confirmed that OXY treatment was associated with autophagy, mitochondrial dysfunction, and ROS generation. Additionally, treatment was associated with activation of both intrinsic and extrinsic apoptotic pathways. In the estrogen receptor (ER) positive MCF7 and T47D cells, OXY induced TNFα expression and TNFR1 degradation, indicating autocrine receptor-mediated apoptosis in these lines. Reference: Cancer Med. 2013 Oct;2(5):687-700. https://pubmed.ncbi.nlm.nih.gov/24403234/
In vivo activity:
Next, in order to reaffirm the potential of OXY (oxyphenisatin)-like molecules as clinical candidates, the agent was assessed for in vivo antitumor activity in an MCF7 xenograft animal model. Toxicity studies demonstrated that mice tolerated IP administration of OXY at 300 mg/kg once daily or 200 mg/kg twice daily. Administration of OXY at 300 mg/kg IP once daily for 10 days resulted in significantly smaller tumors from day 33 to day 52 (P < 0.05) (Fig. 4A). Consistent with in vitro data, tumors did not grow during the treatment period. Reference: Cancer Med. 2013 Oct;2(5):687-700. https://pubmed.ncbi.nlm.nih.gov/24403234/
Solvent mg/mL mM
Solubility
DMSO 25.0 62.28
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 401.42 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
Morrison BL, Mullendore ME, Stockwin LH, Borgel S, Hollingshead MG, Newton DL. Oxyphenisatin acetate (NSC 59687) triggers a cell starvation response leading to autophagy, mitochondrial dysfunction, and autocrine TNFα-mediated apoptosis. Cancer Med. 2013 Oct;2(5):687-700. doi: 10.1002/cam4.107. Epub 2013 Jul 23. PMID: 24403234; PMCID: PMC3892800.
In vitro protocol:
Morrison BL, Mullendore ME, Stockwin LH, Borgel S, Hollingshead MG, Newton DL. Oxyphenisatin acetate (NSC 59687) triggers a cell starvation response leading to autophagy, mitochondrial dysfunction, and autocrine TNFα-mediated apoptosis. Cancer Med. 2013 Oct;2(5):687-700. doi: 10.1002/cam4.107. Epub 2013 Jul 23. PMID: 24403234; PMCID: PMC3892800.
In vivo protocol:
Morrison BL, Mullendore ME, Stockwin LH, Borgel S, Hollingshead MG, Newton DL. Oxyphenisatin acetate (NSC 59687) triggers a cell starvation response leading to autophagy, mitochondrial dysfunction, and autocrine TNFα-mediated apoptosis. Cancer Med. 2013 Oct;2(5):687-700. doi: 10.1002/cam4.107. Epub 2013 Jul 23. PMID: 24403234; PMCID: PMC3892800.
1: Morrison BL, Mullendore ME, Stockwin LH, Borgel S, Hollingshead MG, Newton DL. Oxyphenisatin acetate (NSC 59687) triggers a cell starvation response leading to autophagy, mitochondrial dysfunction, and autocrine TNFα-mediated apoptosis. Cancer Med. 2013 Oct;2(5):687-700. doi: 10.1002/cam4.107. Epub 2013 Jul 23. PubMed PMID: 24403234; PubMed Central PMCID: PMC3892800. 2: Trojel-Hansen C, Erichsen KD, Christensen MK, Jensen PB, Sehested M, Nielsen SJ. Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential. Cancer Chemother Pharmacol. 2011 Jul;68(1):127-38. doi: 10.1007/s00280-010-1453-3. Epub 2010 Sep 18. PubMed PMID: 20852860. 3: Uddin MK, Reignier SG, Coulter T, Montalbetti C, Grånäs C, Butcher S, Krog-Jensen C, Felding J. Syntheses and antiproliferative evaluation of oxyphenisatin derivatives. Bioorg Med Chem Lett. 2007 May 15;17(10):2854-7. Epub 2007 Feb 25. PubMed PMID: 17368900. 4: Teh LB, Chong R, Ho JM, Ong YY. Oxyphenisatin induced chronic active hepatitis--a potential health hazard in Singapore. Singapore Med J. 1988 Oct;29(5):508-12. PubMed PMID: 3241981. 5: Bercetche M, Pérez V, Avaginina A. [Chronic hepatitis caused by oxyphenisatin]. Medicina (B Aires). 1984;44(1):59-63. Spanish. PubMed PMID: 6549524. 6: Farack UM, Nell G. Mechanism of action of diphenolic laxatives: the role of adenylate cyclase and mucosal permeability. Digestion. 1984;30(3):191-4. PubMed PMID: 6548720. 7: Farack UM, Nell G, Rummel W. Differentiation of secretagogue drugs by chlorpromazine in rat intestine in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1983 Sep;324(1):70-4. PubMed PMID: 6688858. 8: Valerdiz Casasola S, Linares Rodríguez A, Recarte Alvarez J, Rodrigo Sáez L. [Hepatitis caused by drugs. 5]. Rev Esp Enferm Apar Dig. 1982 Nov;62(5):431-44. Review. Spanish. PubMed PMID: 6762631. 9: Sund RB, Hillestad B. Uptake, conjugation and transport of laxative diphenols by everted sacs of the rat jejunum and stripped colon. Acta Pharmacol Toxicol (Copenh). 1982 Oct;51(4):377-87. PubMed PMID: 6897480. 10: Bergan T, Fotland MH, Sund RB. Interaction between diphenolic laxatives and intestinal bacteria in vitro. Acta Pharmacol Toxicol (Copenh). 1982 Aug;51(2):165-72. PubMed PMID: 6896788. 11: Døssing M, Andreasen PB. Drug-induced liver disease in Denmark. An analysis of 572 cases of hepatotoxicity reported to the Danish Board of Adverse Reactions to Drugs. Scand J Gastroenterol. 1982 Mar;17(2):205-11. PubMed PMID: 6982502. 12: Irwin JP, Peterson GH. Colon preparation for the barium enema: a guide for the radiologist. Gastrointest Radiol. 1982;7(1):75-8. PubMed PMID: 6174383. 13: de Wolff FA, de Haas EJ, Verweij M. A screening method for establishing laxative abuse. Clin Chem. 1981 Jun;27(6):914-7. PubMed PMID: 6894566. 14: Seeff LB. Drug-induced chronic liver disease, with emphasis on chronic active hepatitis. Semin Liver Dis. 1981 May;1(2):104-15. Review. PubMed PMID: 7051296. 15: Kok RM, Faber DB. Qualitative and quantitative analysis of some synthetic, chemically acting laxatives in urine by gas chromatography-mass spectrometry. J Chromatogr. 1981 Mar 13;222(3):389-98. PubMed PMID: 6894448. 16: Nishikawa J. Effects of sodium picosulfate and other laxatives in cultured Chang cells. Arzneimittelforschung. 1981;31(11):1872-5. PubMed PMID: 7198466. 17: Minker E, Matejka Z. Purinergic reflex activated by cathartics in the rat. Acta Physiol Acad Sci Hung. 1981;57(1):99-107. PubMed PMID: 6895147. 18: Kotha P, Rake MO, Willatt D. Liver damage induced by oxyphenisatin. Br Med J. 1980 Dec 6;281(6254):1530. PubMed PMID: 6893676; PubMed Central PMCID: PMC1714947. 19: Wright R. Drug-induced chronic hepatitis. Springer Semin Immunopathol. 1980 Dec;3(3):331-8. Review. PubMed PMID: 7022714. 20: Guillausseau PJ, Guillausseau C, Cywiner-Golenzer C, Warner A, Kaloustian E, Galian A, Lubetzki J. [Oxypenisatin hepatotoxicity--a new case? (author's transl)]. Nouv Presse Med. 1980 Nov 15;9(43):3282. French. PubMed PMID: 6893863.