MedKoo Cat#: 341493 | Name: Sorbosone

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Sorbosone is a biochemical.

Chemical Structure

Sorbosone
Sorbosone
CAS#25990-59-4

Theoretical Analysis

MedKoo Cat#: 341493

Name: Sorbosone

CAS#: 25990-59-4

Chemical Formula: C6H10O6

Exact Mass: 178.0477

Molecular Weight: 178.14

Elemental Analysis: C, 40.45; H, 5.66; O, 53.89

Price and Availability

This product is currently not in stock but may be available through custom synthesis. To ensure cost efficiency, the minimum order quantity is 1 gram. The estimated lead time is 2 to 4 months, with pricing dependent on the complexity of the synthesis (typically high for intricate chemistries). Quotes for quantities below 1 gram will not be provided. To request a quote, please click the button below. Note: If this product becomes available in stock in the future, pricing will be listed accordingly.
Bulk Inquiry
Related CAS #
No Data
Synonym
Sorbosone;
IUPAC/Chemical Name
xylo-Hexos-2-ulose
InChi Key
DCNMIDLYWOTSGK-SRQIZXRXSA-N
InChi Code
InChI=1S/C6H10O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,4-6,8,10-12H,2H2/t4-,5+,6+/m1/s1
SMILES Code
OC[C@H]([C@@H]([C@H](C(C=O)=O)O)O)O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 178.14 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Chen S, Jia N, Ding M, Yuan Y. [Fitness analysis between the L-sorbosone dehydrogenase modules and Ketogulonigenium vulgare chassis]. Sheng Wu Gong Cheng Xue Bao. 2016 Sep 25;32(9):1224-1232. doi: 10.13345/j.cjb.150523. Chinese. PubMed PMID: 29022323. 2: Pan CH, Wang EX, Jia N, Dong XT, Liu Y, Ding MZ, Yuan YJ. Reconstruction of amino acid biosynthetic pathways increases the productivity of 2-keto-L-gulonic acid in Ketogulonicigenium vulgare-Bacillus endophyticus consortium via genes screening. J Ind Microbiol Biotechnol. 2017 Jul;44(7):1031-1040. doi: 10.1007/s10295-017-1928-x. Epub 2017 Mar 10. PubMed PMID: 28283955. 3: Li Y, Li X, Zhang Y. [2-KGA metabolism coupling respiratory chain in Ketogulonigenium vulgare--a review]. Wei Sheng Wu Xue Bao. 2014 Oct 4;54(10):1101-8. Review. Chinese. PubMed PMID: 25803886. 4: Gao L, Hu Y, Liu J, Du G, Zhou J, Chen J. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol. Metab Eng. 2014 Jul;24:30-7. doi: 10.1016/j.ymben.2014.04.003. Epub 2014 Apr 30. PubMed PMID: 24792618. 5: Ma Q, Zou Y, Lv Y, Song H, Yuan YJ. Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture. PLoS One. 2014 Mar 11;9(3):e91789. doi: 10.1371/journal.pone.0091789. eCollection 2014. PubMed PMID: 24619085; PubMed Central PMCID: PMC3950281. 6: Pappenberger G, Hohmann HP. Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid. Adv Biochem Eng Biotechnol. 2014;143:143-88. doi: 10.1007/10_2013_243. Review. PubMed PMID: 24258144. 7: Gao L, Du G, Zhou J, Chen J, Liu J. Characterization of a group of pyrroloquinoline quinone-dependent dehydrogenases that are involved in the conversion of L-sorbose to 2-Keto-L-gulonic acid in Ketogulonicigenium vulgare WSH-001. Biotechnol Prog. 2013 Nov-Dec;29(6):1398-404. doi: 10.1002/btpr.1803. Epub 2013 Sep 18. PubMed PMID: 23970495. 8: Du J, Bai W, Song H, Yuan YJ. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metab Eng. 2013 Sep;19:50-6. doi: 10.1016/j.ymben.2013.05.006. Epub 2013 Jun 5. PubMed PMID: 23747604. 9: Xie L, Zhang D, Dou YF, Zhang LP, Zhao BH. [Purification of L-sorbose/L-sorbosne dehydrogenase from Ketogulonigenium vulgare and construction and selection of genomic library]. Sheng Wu Gong Cheng Xue Bao. 2007 Sep;23(5):891-5. Chinese. PubMed PMID: 18051871. 10: Fu S, Zhang W, Guo A, Wang J. Identification of promoters of two dehydrogenase genes in Ketogulonicigenium vulgare DSM 4025 and their strength comparison in K. vulgare and Escherichia coli. Appl Microbiol Biotechnol. 2007 Jul;75(5):1127-32. Epub 2007 Apr 3. PubMed PMID: 17404730. 11: Attolino E, Catelani G, D'Andrea F, Landi M. A new and efficient entry to D-xylo-hexos-4-ulose and some derivatives thereof through epoxidation of the 3,4-hexeno derivative of diacetone-D-glucose. Carbohydr Res. 2006 Nov 6;341(15):2498-506. Epub 2006 Sep 1. PubMed PMID: 16949562. 12: Miyazaki T, Sugisawa T, Hoshino T. Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of L-sorbosone to L-ascorbic acid. Appl Environ Microbiol. 2006 Feb;72(2):1487-95. PubMed PMID: 16461703; PubMed Central PMCID: PMC1392885. 13: Shibata T, Ichikawa C, Matsuura M, Takata Y, Noguchi Y, Saito Y, Yamashita M. Metabolic engineering study on the direct fermentation of 2-keto-L-gulonic acid, a key intermediate of L-ascorbic acid in Pseudomonas putida IFO3738. J Biosci Bioeng. 2000;90(2):223-5. PubMed PMID: 16232848. 14: Sugisawa T, Miyazaki T, Hoshino T. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025. Biosci Biotechnol Biochem. 2005 Mar;69(3):659-62. PubMed PMID: 15785002. 15: Lee HW, Pan JG. Screening for L-sorbose and L-sorbosone dehydrogenase producing microbes for 2-keto-L-gulonic acid production. J Ind Microbiol Biotechnol. 1999 Aug;23(2):106-111. PubMed PMID: 10510488. 16: Pallanca JE, Smirnoff N. Ascorbic acid metabolism in pea seedlings. A comparison of D-glucosone, L-sorbosone, and L-galactono-1,4-lactone as ascorbate precursors . Plant Physiol. 1999 Jun;120(2):453-62. PubMed PMID: 10364396; PubMed Central PMCID: PMC59283. 17: Saito Y, Ishii Y, Hayashi H, Yoshikawa K, Noguchi Y, Yoshida S, Soeda S, Yoshida M. Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans. Biotechnol Bioeng. 1998 Apr 20-May 5;58(2-3):309-15. PubMed PMID: 10191408. 18: Asakura A, Hoshino T. Isolation and Characterization of a New Quinoprotein Dehydrogenase, L-Sorbose/L-Sorbosone Dehydrogenase. Biosci Biotechnol Biochem. 1999;63(1):46-53. doi: 10.1271/bbb.63.46. PubMed PMID: 27392874. 19: Conklin PL, Pallanca JE, Last RL, Smirnoff N. L-ascorbic acid metabolism in the ascorbate-deficient arabidopsis mutant vtc1. Plant Physiol. 1997 Nov;115(3):1277-85. PubMed PMID: 9390448; PubMed Central PMCID: PMC158592. 20: Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol. 1997 Feb;63(2):454-60. PubMed PMID: 9023923; PubMed Central PMCID: PMC168335.