MedKoo Cat#: 527848 | Name: gamma-DGG
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

gamma-DGG is a broad spectrum glutamate receptor antagonist.

Chemical Structure

gamma-DGG
gamma-DGG
CAS#6729-55-1

Theoretical Analysis

MedKoo Cat#: 527848

Name: gamma-DGG

CAS#: 6729-55-1

Chemical Formula: C7H12N2O5

Exact Mass: 204.0746

Molecular Weight: 204.18

Elemental Analysis: C, 41.18; H, 5.92; N, 13.72; O, 39.18

Price and Availability

Size Price Availability Quantity
50mg USD 350.00 2 Weeks
100mg USD 650.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
gammaDGG; gamma DGG; gamma-DGG; γ-D-Glutamylglycine; γDGG; H-D-GLU(GLY-OH)-OH; D-gamma-Glu-Gly; gamma-D-GLU-GLY; D-gamma-glutamylglycine; N-D-gamma-glutamylglycine
IUPAC/Chemical Name
gamma-D-Glutamylglycine
InChi Key
ACIJGUBIMXQCMF-SCSAIBSYSA-N
InChi Code
InChI=1S/C7H12N2O5/c8-4(7(13)14)1-2-5(10)9-3-6(11)12/h4H,1-3,8H2,(H,9,10)(H,11,12)(H,13,14)/t4-/m1/s1
SMILES Code
O=C(O)CNC(CC[C@H](C(O)=O)N)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
gamma-DGG is a competitive AMPA receptor blocker.
In vitro activity:
This study found that application of 200 μM γ-DGG reduces the mean peak mEPSC amplitude at WT and mutant neurons, however, the effect is less pronounced in the Clcn3-/- than in WT (Figure 2A). The cumulative frequency distribution of mEPSC amplitudes revealed that γ-DGG shifted the distribution of events towards lower values in WT than in Clcn3-/- neurons (Figure 2B). The efficiency of the blocker in reducing the mean peak mEPSC amplitude was ~1.5 fold stronger for WT than for Clcn3-/- neurons, as expected for higher glutamate concentration in Clcn3-/- than in WT synaptic clefts. This study found that application of γ-DGG reduces mean peak mEPSC amplitudes by 18 ± 2 % for WT (n = 12, three different cultures), but only by 12 ± 2% (n = 12, three different cultures) for Clcn3-/- neurons (p < 0.05; Figure 2C). Reference: Front Cell Neurosci. 2014 May 23;8:143. https://pubmed.ncbi.nlm.nih.gov/24904288/
In vivo activity:
Compared to controls, inhibition of fEPSP amplitude induced by γ-DGG (1 mm) was 0.38 ± 0.03 and 0.41 ± 0.03 in saline-treated (n= 5) and ceftriaxone-treated rats (n= 5), respectively. Reference: J Physiol. 2009 Oct 1;587(Pt 19):4575-88. https://pubmed.ncbi.nlm.nih.gov/19651762/
Solvent mg/mL mM
Solubility
Water 85.2 417.32
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 204.18 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Guzman RE, Alekov AK, Filippov M, Hegermann J, Fahlke C. Involvement of ClC-3 chloride/proton exchangers in controlling glutamatergic synaptic strength in cultured hippocampal neurons. Front Cell Neurosci. 2014 May 23;8:143. doi: 10.3389/fncel.2014.00143. PMID: 24904288; PMCID: PMC4033211. 2. Auger C, Ogden D. AMPA receptor activation controls type I metabotropic glutamate receptor signalling via a tyrosine kinase at parallel fibre-Purkinje cell synapses. J Physiol. 2010 Aug 15;588(Pt 16):3063-74. doi: 10.1113/jphysiol.2010.191080. Epub 2010 Jul 5. PMID: 20603338; PMCID: PMC2956945. 3. Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses. J Physiol. 2009 Oct 1;587(Pt 19):4575-88. doi: 10.1113/jphysiol.2009.177881. Epub 2009 Aug 3. PMID: 19651762; PMCID: PMC2768014.
In vitro protocol:
1. Guzman RE, Alekov AK, Filippov M, Hegermann J, Fahlke C. Involvement of ClC-3 chloride/proton exchangers in controlling glutamatergic synaptic strength in cultured hippocampal neurons. Front Cell Neurosci. 2014 May 23;8:143. doi: 10.3389/fncel.2014.00143. PMID: 24904288; PMCID: PMC4033211. 2. Auger C, Ogden D. AMPA receptor activation controls type I metabotropic glutamate receptor signalling via a tyrosine kinase at parallel fibre-Purkinje cell synapses. J Physiol. 2010 Aug 15;588(Pt 16):3063-74. doi: 10.1113/jphysiol.2010.191080. Epub 2010 Jul 5. PMID: 20603338; PMCID: PMC2956945.
In vivo protocol:
1. Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses. J Physiol. 2009 Oct 1;587(Pt 19):4575-88. doi: 10.1113/jphysiol.2009.177881. Epub 2009 Aug 3. PMID: 19651762; PMCID: PMC2768014.
1: Wu Z, Foster AC, Staubli U, Wu X, Sun C, Tang X, Li YX, Chen G. Effects of 3-aminoglutarate, a "silent" false transmitter for glutamate neurons, on synaptic transmission and epileptiform activity. Neuropharmacology. 2015 Oct;97:95-103. doi: 10.1016/j.neuropharm.2015.05.011. Epub 2015 May 19. PubMed PMID: 26002626. 2: Guzman RE, Alekov AK, Filippov M, Hegermann J, Fahlke C. Involvement of ClC-3 chloride/proton exchangers in controlling glutamatergic synaptic strength in cultured hippocampal neurons. Front Cell Neurosci. 2014 May 23;8:143. doi: 10.3389/fncel.2014.00143. eCollection 2014. PubMed PMID: 24904288; PubMed Central PMCID: PMC4033211. 3: Auger C, Ogden D. AMPA receptor activation controls type I metabotropic glutamate receptor signalling via a tyrosine kinase at parallel fibre-Purkinje cell synapses. J Physiol. 2010 Aug 15;588(Pt 16):3063-74. doi: 10.1113/jphysiol.2010.191080. Epub 2010 Jul 5. PubMed PMID: 20603338; PubMed Central PMCID: PMC2956945. 4: Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F. Up-regulation of GLT-1 severely impairs LTD at mossy fibre--CA3 synapses. J Physiol. 2009 Oct 1;587(Pt 19):4575-88. doi: 10.1113/jphysiol.2009.177881. Epub 2009 Aug 3. PubMed PMID: 19651762; PubMed Central PMCID: PMC2768014. 5: Wozny C, Maier N, Fidzinski P, Breustedt J, Behr J, Schmitz D. Differential cAMP signaling at hippocampal output synapses. J Neurosci. 2008 Dec 31;28(53):14358-62. doi: 10.1523/JNEUROSCI.4973-08.2008. PubMed PMID: 19118168. 6: Wu XS, Xue L, Mohan R, Paradiso K, Gillis KD, Wu LG. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J Neurosci. 2007 Mar 14;27(11):3046-56. PubMed PMID: 17360928. 7: Ghersi C, Bonfanti A, Manzari B, Feligioni M, Raiteri M, Pittaluga A. Pharmacological heterogeneity of release-regulating presynaptic AMPA/kainate receptors in the rat brain: study with receptor antagonists. Neurochem Int. 2003 Mar;42(4):283-92. PubMed PMID: 12470701. 8: Wadiche JI, Jahr CE. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron. 2001 Oct 25;32(2):301-13. PubMed PMID: 11683999. 9: Boucher Y, Pollin B, Azérad J. Microinfusions of excitatory amino acid antagonists into the trigeminal sensory complex antagonize the jaw opening reflex in freely moving rats. Brain Res. 1993 Jun 18;614(1-2):155-63. PubMed PMID: 8102311. 10: Okada Y. The properties of the long-term potentiation (LTP) in the superior colliculus. Prog Brain Res. 1993;95:287-96. Review. PubMed PMID: 8493339. 11: Näsström J, Karlsson U, Post C. Antinociceptive actions of different classes of excitatory amino acid receptor antagonists in mice. Eur J Pharmacol. 1992 Feb 25;212(1):21-9. PubMed PMID: 1313371. 12: Piotrovsky LB, Garyaev AP, Poznyakova LN. Dipeptides--analogues of N-acetylaspartylglutamate inhibit convulsive effects of excitatory amino acids in mice. Neurosci Lett. 1991 Apr 29;125(2):227-30. PubMed PMID: 1679219. 13: Shi LY, Ku BS, Yao HY. [Studies on antidepressant effects of several overshort peptides (OSP)]. Yao Xue Xue Bao. 1991;26(7):546-7. Chinese. PubMed PMID: 1805514. 14: Miyamoto T, Sakurai T, Okada Y. Masking effect of NMDA receptor antagonists on the formation of long-term potentiation (LTP) in superior colliculus slices from the guinea pig. Brain Res. 1990 Jun 4;518(1-2):166-72. PubMed PMID: 1975212. 15: Okano K. Two pharmacologically distinct receptors mediate two postsynaptic potential (PSP) components in the afferent synapse of the Plotosus eletroreceptor. Brain Res. 1988 Aug 2;457(1):89-97. PubMed PMID: 2844358. 16: Kano M, Kato M, Chang HS. The glutamate receptor subtype mediating parallel fibre-Purkinje cell transmission in rabbit cerebellar cortex. Neurosci Res. 1988 Apr;5(4):325-37. PubMed PMID: 2897650. 17: Cochran SL, Kasik P, Precht W. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog. Synapse. 1987;1(1):102-23. PubMed PMID: 2850617. 18: Schouenborg J, Sjölund BH. First-order nociceptive synapses in rat dorsal horn are blocked by an amino acid antagonist. Brain Res. 1986 Aug 6;379(2):394-8. PubMed PMID: 3742230. 19: Davies J, Miller AJ, Sheardown MJ. Amino acid receptor mediated excitatory synaptic transmission in the cat red nucleus. J Physiol. 1986 Jul;376:13-29. PubMed PMID: 2879036; PubMed Central PMCID: PMC1182784. 20: Brodin L, Grillner S. The role of putative excitatory amino acid neurotransmitters in the initiation of locomotion in the lamprey spinal cord. I. The effects of excitatory amino acid antagonists. Brain Res. 1985 Dec 23;360(1-2):139-48. PubMed PMID: 2866822.