MedKoo Cat#: 341198 | Name: Piceatannol
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Piceatannol is a plant metabolite possessing anti-leukemic activity. Piceatannol has exhibited cytotoxic effects on neuroblastoma cells.

Chemical Structure

Piceatannol
Piceatannol
CAS#10083-24-6

Theoretical Analysis

MedKoo Cat#: 341198

Name: Piceatannol

CAS#: 10083-24-6

Chemical Formula: C14H12O4

Exact Mass: 244.0736

Molecular Weight: 244.25

Elemental Analysis: C, 68.85; H, 4.95; O, 26.20

Price and Availability

Size Price Availability Quantity
5mg USD 425.00
25mg USD 1,305.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Piceatannol; NSC 622471; NSC-622471; NSC622471;
IUPAC/Chemical Name
(E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-benzenediol, 3,3′,4,5′-Tetrahydroxy-trans-stilbene
InChi Key
CDRPUGZCRXZLFL-OWOJBTEDSA-N
InChi Code
InChI=1S/C14H12O4/c15-11-5-10(6-12(16)8-11)2-1-9-3-4-13(17)14(18)7-9/h1-8,15-18H/b2-1+
SMILES Code
c1(c(ccc(\C=C\c2cc(O)cc(c2)O)c1)O)O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF.
In vitro activity:
The results revealed that piceatannol activated autophagy in MOLT-4 cells, as evidenced by the detection of an increased level of LC3-II protein and a concomitant decrease in p62/SQSTM1 protein level. Moreover, piceatannol induced apoptosis in MOLT-4 cells which was accompanied by phosphatidylserine externalization, caspase-3 activation, disruption of mitochondrial membrane potential, internucleosomal DNA fragmentation, PARP1 cleavage, chromatin condensation, and fragmentation of cell nuclei. Reference: Toxicol In Vitro. 2019 Sep;59:12-25. https://pubmed.ncbi.nlm.nih.gov/30940561/
In vivo activity:
The purpose of the present work was to evaluate the anti-inflammatory effect of PIC (piceatannol) on dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in BALB/c mice by dissolving 5% DSS in their drinking water for 7 days. PIC (1, 2.5, 5, or 10 mg/kg body weight) was administrated daily per oral route for 7 days. A significant blunting of weight loss and clinical signs was observed in DSS-exposed, PIC-treated mice when compared to vehicle-treated mice. This was associated with a remarkable amelioration of the disruption of the colonic architecture, a significant reduction in colonic myeloperoxidase (MPO) activity, and a decrease in production of inflammatory mediators such as nitric oxide (NO), prostaglandin (PG) E2, and pro-inflammatory cytokines. Reference: Int Immunopharmacol. 2008 Dec 10;8(12):1695-702. https://pubmed.ncbi.nlm.nih.gov/18773974/
Solvent mg/mL mM comments
Solubility
DMF 3.0 12.28
DMSO 27.1 110.98
Ethanol 27.5 112.50
Ethanol:PBS (pH 7.2) (1:2) 0.3 1.23
Water 1.0 4.09
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 244.25 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Siedlecka-Kroplewska K, Ślebioda T, Kmieć Z. Induction of autophagy, apoptosis and aquisition of resistance in response to piceatannol toxicity in MOLT-4 human leukemia cells. Toxicol In Vitro. 2019 Sep;59:12-25. doi: 10.1016/j.tiv.2019.03.040. Epub 2019 Mar 30. PMID: 30940561. 2. Oliver JM, Burg DL, Wilson BS, McLaughlin JL, Geahlen RL. Inhibition of mast cell Fc epsilon R1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol. J Biol Chem. 1994 Nov 25;269(47):29697-703. PMID: 7961959. 3. Peng LY, Yuan M, Shi HT, Li JH, Song K, Huang JN, Yi PF, Fu BD, Shen HQ. Protective Effect of Piceatannol Against Acute Lung Injury Through Protecting the Integrity of Air-Blood Barrier and Modulating the TLR4/NF-κB Signaling Pathway Activation. Front Pharmacol. 2020 Jan 22;10:1613. doi: 10.3389/fphar.2019.01613. PMID: 32038265; PMCID: PMC6988518. 4. Kim YH, Kwon HS, Kim DH, Cho HJ, Lee HS, Jun JG, Park JH, Kim JK. Piceatannol, a stilbene present in grapes, attenuates dextran sulfate sodium-induced colitis. Int Immunopharmacol. 2008 Dec 10;8(12):1695-702. doi: 10.1016/j.intimp.2008.08.003. Epub 2008 Sep 4. PMID: 18773974.
In vitro protocol:
1. Siedlecka-Kroplewska K, Ślebioda T, Kmieć Z. Induction of autophagy, apoptosis and aquisition of resistance in response to piceatannol toxicity in MOLT-4 human leukemia cells. Toxicol In Vitro. 2019 Sep;59:12-25. doi: 10.1016/j.tiv.2019.03.040. Epub 2019 Mar 30. PMID: 30940561. 2. Oliver JM, Burg DL, Wilson BS, McLaughlin JL, Geahlen RL. Inhibition of mast cell Fc epsilon R1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol. J Biol Chem. 1994 Nov 25;269(47):29697-703. PMID: 7961959.
In vivo protocol:
1. Peng LY, Yuan M, Shi HT, Li JH, Song K, Huang JN, Yi PF, Fu BD, Shen HQ. Protective Effect of Piceatannol Against Acute Lung Injury Through Protecting the Integrity of Air-Blood Barrier and Modulating the TLR4/NF-κB Signaling Pathway Activation. Front Pharmacol. 2020 Jan 22;10:1613. doi: 10.3389/fphar.2019.01613. PMID: 32038265; PMCID: PMC6988518. 2. Kim YH, Kwon HS, Kim DH, Cho HJ, Lee HS, Jun JG, Park JH, Kim JK. Piceatannol, a stilbene present in grapes, attenuates dextran sulfate sodium-induced colitis. Int Immunopharmacol. 2008 Dec 10;8(12):1695-702. doi: 10.1016/j.intimp.2008.08.003. Epub 2008 Sep 4. PMID: 18773974.
1: Angelopoulou A, Theocharous G, Valakos D, Polyzou A, Magkouta S, Myrianthopoulos V, Havaki S, Fiorillo M, Tremi I, Vachlas K, Nisotakis T, Thanos DF, Pantazaki A, Kletsas D, Bartek J, Petty R, Thanos D, McCrimmon RJ, Papaspyropoulos A, Gorgoulis VG. Loss of the tumour suppressor LKB1/STK11 uncovers a leptin-mediated sensitivity mechanism to mitochondrial uncouplers for targeted cancer therapy. Mol Cancer. 2024 Jul 25;23(1):147. doi: 10.1186/s12943-024-02061-4. PMID: 39048991; PMCID: PMC11270803. 2: Chunkrua P, Leschonski KP, Gran-Scheuch AA, Vreeke GJC, Vincken JP, Fraaije MW, van Berkel WJH, de Bruijn WJC, Kabel MA. Prenylation of aromatic amino acids and plant phenolics by an aromatic prenyltransferase from Rasamsonia emersonii. Appl Microbiol Biotechnol. 2024 Jul 18;108(1):421. doi: 10.1007/s00253-024-13254-8. PMID: 39023782; PMCID: PMC11258057. 3: Güçlü E, Ayan İÇ, Çetinkaya S, Dursun HG, Vural H. Piceatannol induces caspase-dependent apoptosis by modulating intracellular reactive oxygen species/mitochondrial membrane potential and enhances autophagy in neuroblastoma cells. J Appl Toxicol. 2024 Jul 14. doi: 10.1002/jat.4671. Epub ahead of print. PMID: 39004823. 4: Kaur P, Vyas M, Sharma S. Dental Caries: Unveiling the State-of-the-Art Insights and Crafting Hypotheses for Oral Health. Curr Pharm Des. 2024 Jul 11. doi: 10.2174/0113816128318101240708095951. Epub ahead of print. PMID: 38994613. 5: Fan Z, Li Z, Fu T, Feng Y, Chen Y, Liu H, Du B, Cui X, Zhao H, Xue G, Cui J, Yan C, Gan L, Feng J, Xu Z, Yu Z, Yuan J. Inhibition of the ATP synthase increases sensitivity of Escherichia coli carrying mcr-1 to polymyxin B. J Antibiot (Tokyo). 2024 Jun 24. doi: 10.1038/s41429-024-00753-z. Epub ahead of print. PMID: 38914795. 6: Yoshihara M, Kawakami S, Matsui Y, Kawama T. Piceatannol enhances hyaluronic acid synthesis through SIRT1-Mediated HAS2 upregulation in human dermal fibroblasts. Biochem Biophys Rep. 2024 Jun 4;39:101746. doi: 10.1016/j.bbrep.2024.101746. PMID: 38910870; PMCID: PMC11190487. 7: Zhang Y, Wang Z, Liu J, Liu H, Li Z, Liu J. Interactions of different polyphenols with wheat germ albumin and globulin: Alterations in the conformation and emulsification properties of proteins. Food Chem. 2024 Nov 1;457:140129. doi: 10.1016/j.foodchem.2024.140129. Epub 2024 Jun 21. PMID: 38908242. 8: Li X, Liu X, Yang F, Meng T, Li X, Yan Y, Xiao K. Mechanism of Dahuang Mudan Decotion in the treatment of colorectal cancer based on network pharmacology and experimental validation. Heliyon. 2024 May 29;10(11):e32136. doi: 10.1016/j.heliyon.2024.e32136. PMID: 38882337; PMCID: PMC11176830. 9: Nakayama T, Uno B. Concerted Two-Proton-Coupled Electron Transfer from Piceatannol to Electrogenerated Superoxide in N,N-Dimethylformamide. ACS Omega. 2024 May 31;9(23):24889-24898. doi: 10.1021/acsomega.4c01742. PMID: 38882073; PMCID: PMC11171091. 10: Rajan RK, Engels M, Ramanathan M. Predicting phase-I metabolism of piceatannol: an in silico study. In Silico Pharmacol. 2024 Jun 5;12(1):52. doi: 10.1007/s40203-024-00228-x. PMID: 38854674; PMCID: PMC11153392. 11: Koc TY, Gulluce M, Yilmaz B, Karadayi M. Isolation and characterization of piceatannol producing bacteria from soil in Erzurum, Turkey. Cell Mol Biol (Noisy-le-grand). 2024 Jun 5;70(6):28-36. doi: 10.14715/cmb/2024.70.6.5. PMID: 38836684. 12: Tanaka K, Kawakami S, Mori S, Yamaguchi T, Saito E, Setoguchi Y, Matsui Y, Nishimura E, Ebihara S, Kawama T. Piceatannol Upregulates SIRT1 Expression in Skeletal Muscle Cells and in Human Whole Blood: In Vitro Assay and a Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Trial. Life (Basel). 2024 May 5;14(5):589. doi: 10.3390/life14050589. PMID: 38792610; PMCID: PMC11122325. 13: Muller J, Marchisio L, Attia R, Zedet A, Maradan R, Vallet M, Aebischer A, Harakat D, Senejoux F, Ramseyer C, Foley S, Cardey B, Girard C, Pudlo M. A colorimetric assay adapted to fragment screening revealing aurones and chalcones as new arginase inhibitors. RSC Med Chem. 2024 Feb 28;15(5):1722-1730. doi: 10.1039/d3md00713h. PMID: 38784454; PMCID: PMC11110760. 14: Koshak AE, Elfaky MA, Albadawi DAI, Abdallah HM, Mohamed GA, Ibrahim SRM, Alzain AA, Khafagy ES, Elsayed EM, Hegazy WAH. Piceatannol: a renaissance in antibacterial innovation unveiling synergistic potency and virulence disruption against serious pathogens. Int Microbiol. 2024 May 20. doi: 10.1007/s10123-024-00532-8. Epub ahead of print. PMID: 38767683. 15: Ingrà C, Del Frari G, Favole M, Tumminelli E, Rossi D, Collina S, Prati M, Ferreira RB, Ferrandino A. Effects of Growing Areas, Pruning Wound Protection Products, and Phenological Stage on the Stilbene Composition of Grapevine (Vitis vinifera L.) Canes. J Agric Food Chem. 2024 May 22;72(20):11465-11479. doi: 10.1021/acs.jafc.4c00583. Epub 2024 May 13. PMID: 38739781. 16: Fei Z, Zhong X, Cai Y. Piceatannol inhibits cerebral aneurysms in mice via downregulating the NF-κB pathway. Asian J Surg. 2024 May 6:S1015-9584(24)00825-X. doi: 10.1016/j.asjsur.2024.04.142. Epub ahead of print. PMID: 38714407. 17: Wei Y, Zhang Y, Wang Z, Yang Z, Wang Z, Hao Y, Li G, Gao F, Ye G, Wang J, Liu J. New insight into molecular mechanisms of different polyphenols affecting Sirtuin 3 deacetylation activity. Int J Biol Macromol. 2024 Jun;270(Pt 1):132026. doi: 10.1016/j.ijbiomac.2024.132026. Epub 2024 May 3. PMID: 38704074. 18: He MJ, Ran DL, Zhang ZY, Fu DS, He Q, Zhang HY, Mao Y, Zhao PY, Yin GW, Zhang JA. Exploring the roles and potential therapeutic strategies of inflammation and metabolism in the pathogenesis of vitiligo: a mendelian randomization and bioinformatics-based investigation. Front Genet. 2024 Apr 10;15:1385339. doi: 10.3389/fgene.2024.1385339. PMID: 38660673; PMCID: PMC11039897. 19: Pandey PK, Patra M, Ranjan P, Kumar Pal N, Choudhary S, Bera JK. A Single Terminal [NiII-OH] Catalyst for Direct Julia-Type Olefination and α-Alkylation Involving Sulfones and Alcohols. Chemistry. 2024 Jun 20;30(35):e202400337. doi: 10.1002/chem.202400337. Epub 2024 May 22. PMID: 38644351. 20: Pichetkun V, Khine HEE, Srifa S, Nukulkit S, Nuengchamnong N, Hansapaiboon S, Saenmuangchin R, Chaotham C, Chansriniyom C. Diverse effects of a Cyperus rotundus extract on glucose uptake in myotubes and adipocytes and its suppression on adipocyte maturation. Sci Rep. 2024 Apr 19;14(1):9018. doi: 10.1038/s41598-024-59357-0. PMID: 38641685; PMCID: PMC11031566.