MedKoo Cat#: 527689 | Name: Suberohydroxamic acid
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Suberohydroxamic acid is a histone deacetylase inhibitor, reducung the number of EpCAM(+) liver cancer stem cells in vitro.

Chemical Structure

Suberohydroxamic acid
Suberohydroxamic acid
CAS#38937-66-5

Theoretical Analysis

MedKoo Cat#: 527689

Name: Suberohydroxamic acid

CAS#: 38937-66-5

Chemical Formula: C8H16N2O4

Exact Mass: 204.1110

Molecular Weight: 204.23

Elemental Analysis: C, 47.05; H, 7.90; N, 13.72; O, 31.34

Price and Availability

Size Price Availability Quantity
100mg USD 250.00 2 weeks
250mg USD 415.00 2 weeks
500mg USD 575.00 2 weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Suberohydroxamic Acid
IUPAC/Chemical Name
N,N-Dihydroxyoctanediamide
InChi Key
MIXVYMUNVFPYND-UHFFFAOYSA-N
InChi Code
InChI=1S/C8H16N2O4/c9-7(11)5-3-1-2-4-6-8(12)10(13)14/h13-14H,1-6H2,(H2,9,11)
SMILES Code
O=C(N(O)O)CCCCCCC(N)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Suberohydroxamic acid is a competitive and cell-permeable HDAC1 and HDAC3 inhibitor with ID50 values of 0.25 μM and 0.30 μM, respectively.
In vitro activity:
Gene inactivation of CDK inhibitors is often due to promoter methylation, while HDACs regulate gene expression by deacetylating proteins. In myeloma cells treated with suberohydroxamic acid and decitabine alone, the expression of both p15INK4b and p21WAF was significantly upregulated in RPMI8226 cells (p53‑functional, without IL‑6 expression), whereas in the U266 cell line (p53 deleted, expressing IL‑6) only p21WAF expression was significantly increased. Reference: Mol Med Rep. 2022 Oct;26(4):321. https://pubmed.ncbi.nlm.nih.gov/36043519/
In vivo activity:
The combination of GM101 and HDAC inhibitors (HDACi), such as suberohydroxamic acid, is a promising strategy to address the challenges toward successful clinical development of oncolytic adenoviruses (oAds). GM101 + suberohydroxamic acid and GM101 + MS-275 induced more potent antitumor efficacy than any monotherapy in U343 xenograft tumor model. Reference: Cells. 2021 Oct 20;10(11):2811. https://pubmed.ncbi.nlm.nih.gov/34831034/
Solvent mg/mL mM
Solubility
DMSO 50.0 244.83
Water 8.3 40.79
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 204.23 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Trtkova KS, Luzna P, Drozdkova DW, Cizkova K, Janovska L, Gursky J, Prukova D, Frydrych I, Hajduch M, Minarik J. The epigenetic impact of suberohydroxamic acid and 5‑Aza‑2'‑deoxycytidine on DNMT3B expression in myeloma cell lines differing in IL‑6 expression. Mol Med Rep. 2022 Oct;26(4):321. doi: 10.3892/mmr.2022.12837. Epub 2022 Aug 31. PMID: 36043519; PMCID: PMC9471560. 2. Drozdkova DH, Gursky J, Minarik J, Überall I, Kolar Z, Trtkova KS. CDKN1A Gene Expression in Two Multiple Myeloma Cell Lines With Different P53 Functionality. Anticancer Res. 2020 Sep;40(9):4979-4987. doi: 10.21873/anticanres.14501. PMID: 32878786. In vivo study 1. Chang HG, Choi YH, Hong J, Choi JW, Yoon AR, Yun CO. GM101 in Combination with Histone Deacetylase Inhibitor Enhances Anti-Tumor Effects in Desmoplastic Microenvironment. Cells. 2021 Oct 20;10(11):2811. doi: 10.3390/cells10112811. PMID: 34831034; PMCID: PMC8616263. 2. Nio K, Yamashita T, Okada H, Kondo M, Hayashi T, Hara Y, Nomura Y, Zeng SS, Yoshida M, Hayashi T, Sunagozaka H, Oishi N, Honda M, Kaneko S. Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J Hepatol. 2015 Nov;63(5):1164-72. doi: 10.1016/j.jhep.2015.06.009. Epub 2015 Jun 18. PMID: 26095183.
In vitro protocol:
1. Trtkova KS, Luzna P, Drozdkova DW, Cizkova K, Janovska L, Gursky J, Prukova D, Frydrych I, Hajduch M, Minarik J. The epigenetic impact of suberohydroxamic acid and 5‑Aza‑2'‑deoxycytidine on DNMT3B expression in myeloma cell lines differing in IL‑6 expression. Mol Med Rep. 2022 Oct;26(4):321. doi: 10.3892/mmr.2022.12837. Epub 2022 Aug 31. PMID: 36043519; PMCID: PMC9471560. 2. Drozdkova DH, Gursky J, Minarik J, Überall I, Kolar Z, Trtkova KS. CDKN1A Gene Expression in Two Multiple Myeloma Cell Lines With Different P53 Functionality. Anticancer Res. 2020 Sep;40(9):4979-4987. doi: 10.21873/anticanres.14501. PMID: 32878786.
In vivo protocol:
1. Chang HG, Choi YH, Hong J, Choi JW, Yoon AR, Yun CO. GM101 in Combination with Histone Deacetylase Inhibitor Enhances Anti-Tumor Effects in Desmoplastic Microenvironment. Cells. 2021 Oct 20;10(11):2811. doi: 10.3390/cells10112811. PMID: 34831034; PMCID: PMC8616263. 2. Nio K, Yamashita T, Okada H, Kondo M, Hayashi T, Hara Y, Nomura Y, Zeng SS, Yoshida M, Hayashi T, Sunagozaka H, Oishi N, Honda M, Kaneko S. Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J Hepatol. 2015 Nov;63(5):1164-72. doi: 10.1016/j.jhep.2015.06.009. Epub 2015 Jun 18. PMID: 26095183.
1: Neuzil J, Swettenham E, Gellert N. Sensitization of mesothelioma to TRAIL apoptosis by inhibition of histone deacetylase: role of Bcl-xL down-regulation. Biochem Biophys Res Commun. 2004 Jan 30;314(1):186-91. doi: 10.1016/j.bbrc.2003.12.074. PMID: 14715264. 2: Nio K, Yamashita T, Okada H, Kondo M, Hayashi T, Hara Y, Nomura Y, Zeng SS, Yoshida M, Hayashi T, Sunagozaka H, Oishi N, Honda M, Kaneko S. Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J Hepatol. 2015 Nov;63(5):1164-72. doi: 10.1016/j.jhep.2015.06.009. Epub 2015 Jun 18. PMID: 26095183. 3: Wang L, Li M, Tang J, Li X. Eremophilane Sesquiterpenes from a Deep Marine- Derived Fungus, Aspergillus sp. SCSIOW2, Cultivated in the Presence of Epigenetic Modifying Agents. Molecules. 2016 Apr 18;21(4):473. doi: 10.3390/molecules21040473. PMID: 27096861; PMCID: PMC6274295. 4: Shapira L, Ralph M, Tomer E, Cohen S, Kobiler O. Histone Deacetylase Inhibitors Reduce the Number of Herpes Simplex Virus-1 Genomes Initiating Expression in Individual Cells. Front Microbiol. 2016 Dec 6;7:1970. doi: 10.3389/fmicb.2016.01970. PMID: 27999572; PMCID: PMC5138200. 5: Mazzio EA, Soliman KF. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells. Cancer Genomics Proteomics. 2017 Jan 2;14(1):17-33. doi: 10.21873/cgp.20016. PMID: 28031235; PMCID: PMC5267498. 6: Li X, Xia Z, Tang J, Wu J, Tong J, Li M, Ju J, Chen H, Wang L. Identification and Biological Evaluation of Secondary Metabolites from Marine Derived Fungi- Aspergillus sp. SCSIOW3, Cultivated in the Presence of Epigenetic Modifying Agents. Molecules. 2017 Aug 4;22(8):1302. doi: 10.3390/molecules22081302. PMID: 28777319; PMCID: PMC6152046. 7: Lima MTNS, Santos LBD, Bastos RW, Nicoli JR, Takahashi JA. Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi. Braz J Microbiol. 2018 Jan-Mar;49(1):169-176. doi: 10.1016/j.bjm.2017.06.004. Epub 2017 Aug 1. PMID: 28818332; PMCID: PMC5790575. 8: Maimon E, Samuni A, Goldstein S. Nitrogen Dioxide Reaction with Nitroxide Radical Derived from Hydroxamic Acids: The Intermediacy of Acyl Nitroso and Nitroxyl (HNO). J Phys Chem A. 2018 Apr 19;122(15):3747-3753. doi: 10.1021/acs.jpca.8b02300. Epub 2018 Apr 9. PMID: 29608853. 9: Drozdkova DH, Gursky J, Minarik J, Überall I, Kolar Z, Trtkova KS. CDKN1A Gene Expression in Two Multiple Myeloma Cell Lines With Different P53 Functionality. Anticancer Res. 2020 Sep;40(9):4979-4987. doi: 10.21873/anticanres.14501. PMID: 32878786. 10: Niu S, Liu D, Shao Z, Liu J, Fan A, Lin W. Chemical epigenetic manipulation triggers the production of sesquiterpenes from the deep-sea derived Eutypella fungus. Phytochemistry. 2021 Dec;192:112978. doi: 10.1016/j.phytochem.2021.112978. Epub 2021 Oct 19. PMID: 34678625. 11: Larragoite ET, Nell RA, Martins LJ, Barrows LR, Planelles V, Spivak AM. Histone deacetylase inhibition reduces deleterious cytokine release induced by ingenol stimulation. Biochem Pharmacol. 2022 Jan;195:114844. doi: 10.1016/j.bcp.2021.114844. Epub 2021 Nov 18. PMID: 34801521; PMCID: PMC8712404. 12: Chang HG, Choi YH, Hong J, Choi JW, Yoon AR, Yun CO. GM101 in Combination with Histone Deacetylase Inhibitor Enhances Anti-Tumor Effects in Desmoplastic Microenvironment. Cells. 2021 Oct 20;10(11):2811. doi: 10.3390/cells10112811. PMID: 34831034; PMCID: PMC8616263. 13: Trtkova KS, Luzna P, Drozdkova DW, Cizkova K, Janovska L, Gursky J, Prukova D, Frydrych I, Hajduch M, Minarik J. The epigenetic impact of suberohydroxamic acid and 5‑Aza‑2'‑deoxycytidine on DNMT3B expression in myeloma cell lines differing in IL‑6 expression. Mol Med Rep. 2022 Oct;26(4):321. doi: 10.3892/mmr.2022.12837. Epub 2022 Aug 31. PMID: 36043519; PMCID: PMC9471560. 14: Mazucato VS, Vieira PC. Exploring the chemical diversity of phytopathogenic fungi infecting edible fruits. Nat Prod Res. 2023 Nov-Dec;37(23):3947-3955. doi: 10.1080/14786419.2022.2163482. Epub 2023 Jan 3. PMID: 36597649. 15: Shi X, Sun Y, Liu J, Liu W, Xing Y, Xiu Z, Dong Y. Metabolomic Strategy to Characterize the Profile of Secondary Metabolites in Aspergillus aculeatus DL1011 Regulated by Chemical Epigenetic Agents. Molecules. 2022 Dec 26;28(1):218. doi: 10.3390/molecules28010218. PMID: 36615412; PMCID: PMC9821969. 16: De Jesús Báez LR, Rosas AS, Mahale P, Mallouk TE. Chelation-Based Route to Aluminum-Free Layered Transition Metal Carbides (MXenes). ACS Omega. 2023 Oct 24;8(44):41969-41976. doi: 10.1021/acsomega.3c07442. PMID: 37970010; PMCID: PMC10633885.