MedKoo Cat#: 584245 | Name: Dencichin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Dencichin, also known as β-ODAP, has been shown to alleviate metabolism disorder, improve renal function, relieve pathological alterations in the glomerulus of diabetic neuropathy in rats, decrease extracellular matrix deposition and increase the ratio of matrix metalloproteinase (MMP)-9 to tissue inhibitor of metalloproteinase (TIMP)-1 both in vivo and in vitro.

Chemical Structure

Dencichin
Dencichin
CAS#5302-45-4

Theoretical Analysis

MedKoo Cat#: 584245

Name: Dencichin

CAS#: 5302-45-4

Chemical Formula: C5H8N2O5

Exact Mass: 176.0433

Molecular Weight: 176.13

Elemental Analysis: C, 34.10; H, 4.58; N, 15.91; O, 45.42

Price and Availability

Size Price Availability Quantity
10mg USD 350.00 2 Weeks
25mg USD 650.00 2 Weeks
50mg USD 950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
β-ODAP; Dencichine; BRN 2259036; BRN2259036; BRN-2259036; Ox-Dapro; BOAA; L-Dencichin;
IUPAC/Chemical Name
(S)-2-amino-3-(carboxyformamido)propanoic acid
InChi Key
NEEQFPMRODQIKX-REOHCLBHSA-N
InChi Code
InChI=1S/C5H8N2O5/c6-2(4(9)10)1-7-3(8)5(11)12/h2H,1,6H2,(H,7,8)(H,9,10)(H,11,12)/t2-/m0/s1
SMILES Code
OC([C@@H](N)CNC(C(O)=O)=O)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Dencichin is a non-protein amino acid originally extracted from Panax notoginseng and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.
In vitro activity:
The aim of this study was to investigate the effect of dencichine on osteoclastogenesis in vitro. Dencichine suppressed osteoclastogenesis through the inhibition of phosphorylation of p65, p50 (NF-κB pathway), p38, ERK and JNK (MAPKs pathway) in vitro. Furthermore, dencichine inhibited the function of osteoclasts in a dose-dependent manner. In addition, the expression levels of the nuclear factor of activated T cells 1 (NFATc1) and osteoclastogenesis markers were decreased by dencichine, including MMP-9, Cathepsin K (CTSK), Tartrate-Resistant Acid Phosphatase (TRAP), C-FOS, dendritic cell specific transmembrane protein (DCSTAMP). Therefore, dencichine might serve as a promising candidate for treatment of bone loss diseases, including PMOP and rheumatoid arthritis. Reference: J Pharmacol Sci. 2021 Aug;146(4):206-215. https://pubmed.ncbi.nlm.nih.gov/34116734/
In vivo activity:
The objective of this study was to investigate protective efficacies and mechanisms of dencichine on diabetic kidney injury via in vivo assays. Forty streptozotocin (STZ)-induced diabetic rats with kidney injury were randomly divided into negative control group, three doses of dencichine (40, 80 and 160 mg/kg) groups. Chronic treatment of dencichine improved the STZ-induced diabetic characteristics of model rats. Further histopathological examination of renal tissues revealed 12-week treatment of dencichine effectively improved the morphology of nephropathy in diabetic rats. Moreover, dencichine also ameliorated excessive oxidation stress, down-regulated renal cell apoptosis and fibrosis related proteins, thereby protected renal tissues in diabetic rats. Reference: Life Sci. 2020 Oct 1;258:118146. https://pubmed.ncbi.nlm.nih.gov/32721462/
Solvent mg/mL mM
Solubility
DMSO 5.0 28.39
H2O 5.0 28.39
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 176.13 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Huang C, Cheng L, Feng X, Li X, Wang L. Dencichine ameliorates renal injury by improving oxidative stress, apoptosis and fibrosis in diabetic rats. Life Sci. 2020 Oct 1;258:118146. doi: 10.1016/j.lfs.2020.118146. Epub 2020 Jul 25. PMID: 32721462. 2. Jie L, Pengcheng Q, Qiaoyan H, Linlin B, Meng Z, Fang W, Min J, Li Y, Ya Z, Qian Y, Siwang W. Dencichine ameliorates kidney injury in induced type II diabetic nephropathy via the TGF-β/Smad signalling pathway. Eur J Pharmacol. 2017 Oct 5;812:196-205. doi: 10.1016/j.ejphar.2017.06.024. Epub 2017 Jun 17. PMID: 28633927. 3. Cang D, Zou G, Yang C, Shen X, Li F, Wu Y, Ji B. Dencichine prevents ovariectomy-induced bone loss and inhibits osteoclastogenesis by inhibiting RANKL-associated NF-κB and MAPK signaling pathways. J Pharmacol Sci. 2021 Aug;146(4):206215. doi: 10.1016/j.jphs.2021.04.004. Epub 2021 May 3. PMID: 34116734.
In vitro protocol:
1. Huang C, Cheng L, Feng X, Li X, Wang L. Dencichine ameliorates renal injury by improving oxidative stress, apoptosis and fibrosis in diabetic rats. Life Sci. 2020 Oct 1;258:118146. doi: 10.1016/j.lfs.2020.118146. Epub 2020 Jul 25. PMID: 32721462. 2. Cang D, Zou G, Yang C, Shen X, Li F, Wu Y, Ji B. Dencichine prevents ovariectomy-induced bone loss and inhibits osteoclastogenesis by inhibiting RANKL-associated NF-κB and MAPK signaling pathways. J Pharmacol Sci. 2021 Aug;146(4):206215. doi: 10.1016/j.jphs.2021.04.004. Epub 2021 May 3. PMID: 34116734.
In vivo protocol:
1. Huang C, Cheng L, Feng X, Li X, Wang L. Dencichine ameliorates renal injury by improving oxidative stress, apoptosis and fibrosis in diabetic rats. Life Sci. 2020 Oct 1;258:118146. doi: 10.1016/j.lfs.2020.118146. Epub 2020 Jul 25. PMID: 32721462. 2. Jie L, Pengcheng Q, Qiaoyan H, Linlin B, Meng Z, Fang W, Min J, Li Y, Ya Z, Qian Y, Siwang W. Dencichine ameliorates kidney injury in induced type II diabetic nephropathy via the TGF-β/Smad signalling pathway. Eur J Pharmacol. 2017 Oct 5;812:196-205. doi: 10.1016/j.ejphar.2017.06.024. Epub 2017 Jun 17. PMID: 28633927.
1: Mannan MA, Haque A, Mohammad QD. Lathyrism. Lancet. 1987 Jan 17;1(8525):167. doi: 10.1016/s0140-6736(87)92007-1. PMID: 2880006. 2: Olney JW. Excitotoxins in foods. Neurotoxicology. 1994 Fall;15(3):535-44. PMID: 7854587. 3: Spencer PS, Schaumburg HH. Lathyrism: a neurotoxic disease. Neurobehav Toxicol Teratol. 1983 Nov-Dec;5(6):625-9. PMID: 6422318. 4: Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Cycads and their association with certain neurodegenerative diseases. Neurologia. 2014 Nov-Dec;29(9):517-22. English, Spanish. doi: 10.1016/j.nrl.2013.03.005. Epub 2013 May 30. PMID: 23725821. 5: A poison tree. Lancet. 1987 Oct 24;2(8565):947-8. PMID: 2889865. 6: Li W, Zhou Z, Li X, Ma L, Guan Q, Zheng G, Liang H, Yan Y, Shen X, Wang J, Sun X, Yuan Q. Biosynthesis of plant hemostatic dencichine in Escherichia coli. Nat Commun. 2022 Sep 19;13(1):5492. doi: 10.1038/s41467-022-33255-3. PMID: 36123371; PMCID: PMC9485241. 7: Rao SL. A look at the brighter facets of β-N-oxalyl-l-α,β-diaminopropionic acid, homoarginine and the grass pea. Food Chem Toxicol. 2011 Mar;49(3):620-2. doi: 10.1016/j.fct.2010.06.054. Epub 2010 Jul 21. PMID: 20654679. 8: Dufour DL. Assessing diet in populations at risk for konzo and neurolathyrism. Food Chem Toxicol. 2011 Mar;49(3):655-61. doi: 10.1016/j.fct.2010.08.006. Epub 2010 Aug 18. PMID: 20727379. 9: Jiao CJ, Jiang JL, Ke LM, Cheng W, Li FM, Li ZX, Wang CY. Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem Toxicol. 2011 Mar;49(3):543-9. doi: 10.1016/j.fct.2010.04.050. Epub 2010 May 25. PMID: 20510335. 10: Nunn PB, Lyddiard JR, Christopher Perera KP. Brain glutathione as a target for aetiological factors in neurolathyrism and konzo. Food Chem Toxicol. 2011 Mar;49(3):662-7. doi: 10.1016/j.fct.2010.08.037. Epub 2010 Sep 8. PMID: 20816718. 11: Yan ZY, Spencer PS, Li ZX, Liang YM, Wang YF, Wang CY, Li FM. Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry. 2006 Jan;67(2):107-21. doi: 10.1016/j.phytochem.2005.10.022. Epub 2005 Dec 5. PMID: 16332380. 12: Van Moorhem M, Lambein F, Leybaert L. Unraveling the mechanism of β-N- oxalyl-α,β-diaminopropionic acid (β-ODAP) induced excitotoxicity and oxidative stress, relevance for neurolathyrism prevention. Food Chem Toxicol. 2011 Mar;49(3):550-5. doi: 10.1016/j.fct.2010.03.054. Epub 2010 May 25. PMID: 20510327. 13: Xu Q, Liu F, Chen P, Jez JM, Krishnan HB. β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase. Int J Mol Sci. 2017 Feb 28;18(3):526. doi: 10.3390/ijms18030526. PMID: 28264526; PMCID: PMC5372542. 14: Rodgers KJ, Shiozawa N. Misincorporation of amino acid analogues into proteins by biosynthesis. Int J Biochem Cell Biol. 2008;40(8):1452-66. doi: 10.1016/j.biocel.2008.01.009. Epub 2008 Jan 19. PMID: 18329946. 15: Ravindranath V. Neurolathyrism: mitochondrial dysfunction in excitotoxicity mediated by L-beta-oxalyl aminoalanine. Neurochem Int. 2002 May;40(6):505-9. doi: 10.1016/s0197-0186(01)00121-8. PMID: 11850107. 16: Enneking D. The nutritive value of grasspea (Lathyrus sativus) and allied species, their toxicity to animals and the role of malnutrition in neurolathyrism. Food Chem Toxicol. 2011 Mar;49(3):694-709. doi: 10.1016/j.fct.2010.11.029. Epub 2010 Nov 26. PMID: 21112364. 17: Sui Y, Duan X, Zhang J, Chu Y, Yang X. Synthesis and characterization of a novel 68Ga-labeled p-bromobenzyl lysine-urea-ODAP PSMA inhibitor. Bioorg Med Chem Lett. 2023 Jul 15;91:129382. doi: 10.1016/j.bmcl.2023.129382. Epub 2023 Jun 20. PMID: 37348571. 18: Verma A, Nidhi N, Kaur G, Mantri S, Sharma TR, Pandey AK, Kandoth PK. Contrasting β-ODAP content correlates with stress gene expression in Lathyrus cultivars. Physiol Plant. 2022 Jan;174(1):e13616. doi: 10.1111/ppl.13616. PMID: 35199360. 19: Edwards A, Njaci I, Sarkar A, Jiang Z, Kaithakottil GG, Moore C, Cheema J, Stevenson CEM, Rejzek M, Novák P, Vigouroux M, Vickers M, Wouters RHM, Paajanen P, Steuernagel B, Moore JD, Higgins J, Swarbreck D, Martens S, Kim CY, Weng JK, Mundree S, Kilian B, Kumar S, Loose M, Yant L, Macas J, Wang TL, Martin C, Emmrich PMF. Genomics and biochemical analyses reveal a metabolon key to β-L- ODAP biosynthesis in Lathyrus sativus. Nat Commun. 2023 Feb 16;14(1):876. doi: 10.1038/s41467-023-36503-2. Erratum in: Nat Commun. 2023 Aug 25;14(1):5199. PMID: 36797319; PMCID: PMC9935904. 20: Yang Z, Liu G, Zhang G, Yan J, Dong Y, Lu Y, Fan W, Hao B, Lin Y, Li Y, Li X, Tang Q, Xiang G, He S, Chen J, Chen W, Xu Z, Mao Z, Duan S, Jin S, Yang S. The chromosome-scale high-quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis. Plant Biotechnol J. 2021 May;19(5):869-871. doi: 10.1111/pbi.13558. Epub 2021 Feb 14. PMID: 33529371; PMCID: PMC8131050.