MedKoo Cat#: 571416 | Name: Phorate

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Phorate is a cholinesterase inhibitor that is used as a broad-spectrum antibiotic. Its residues and metabolites may persist in soil, and may be toxic.

Chemical Structure

Phorate
Phorate
CAS#298-02-2

Theoretical Analysis

MedKoo Cat#: 571416

Name: Phorate

CAS#: 298-02-2

Chemical Formula: C7H17O2PS3

Exact Mass: 260.0128

Molecular Weight: 260.36

Elemental Analysis: C, 32.29; H, 6.58; O, 12.29; P, 11.90; S, 36.94

Price and Availability

Size Price Availability Quantity
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Phorate; Granutox; AC 3911; AC-3911; AC3911
IUPAC/Chemical Name
Phosphorodithioic acid, O,O-diethyl S-((ethylthio)methyl) ester
InChi Key
BULVZWIRKLYCBC-UHFFFAOYSA-N
InChi Code
InChI=1S/C7H17O2PS3/c1-4-8-10(11,9-5-2)13-7-12-6-3/h4-7H2,1-3H3
SMILES Code
S=P(OCC)(SCSCC)OCC
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Phorate is a cholinesterase inhibitor that is used as a broad-spectrum antibiotic.
In vitro activity:
Molecular modeling of the phorate-ctDNA interaction suggested the binding of phorate at AT rich regions on minor groove of DNA. The interaction ensued alkylation of the N-6, N-7 of adenine and C-4 carbonyl oxygen of thymine. A discernable change in the voltammetric E(1/2) (E(0')) with lesser cathodic (i(pc)) and anodic (i(pa)) peak currents confirmed the formation of phorate-DNA and phorate-DNA-Cu (II) association complexes. Furthermore, the MTT and NRU assays demonstrated substantial phorate cytotoxicity due to loss of mitochondrial and lysosomal membrane integrity, and reduction in mitochondrial membrane potential (ΔΨm) of treated WISH cells. Cell cycle analysis of WISH cells treated with 1000μM phorate exhibited 13.7-fold (p<0.01) augmentation in the sub-G(1) peak. Annexin V-PE and 7-ADD staining of phorate treated cells reaffirmed the development of late apoptotic or necrotic cell population in a concentration dependent manner. Reference: Mutat Res. 2012 May 15;744(2):125-34. https://pubmed.ncbi.nlm.nih.gov/22306305/
In vivo activity:
Herein, this study measured the blood glucose concentrations of high-fat-diet-fed mice exposed to various concentrations of phorate (0, 0.005, 0.05, or 0.5 mg/kg); this study also assessed the blood glucose concentrations of high-fat-diet-fed mice exposed to phorate; this study also assessed the distribution characteristics of the resistance genes in the intestinal microbiota of these mice. This study found that 0.005 and 0.5 mg/kg of phorate induced obvious hyperglycaemia in the high-fat-diet-fed mice. Exposure to phorate markedly reduced the abundance of Akkermansia muciniphila in the mouse intestine. Reference: Antibiotics (Basel). 2022 Nov 9;11(11):1584. https://pubmed.ncbi.nlm.nih.gov/36358236/

Preparing Stock Solutions

The following data is based on the product molecular weight 260.36 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Saquib Q, Musarrat J, Siddiqui MA, Dutta S, Dasgupta S, Giesy JP, Al-Khedhairy AA. Cytotoxic and necrotic responses in human amniotic epithelial (WISH) cells exposed to organophosphate insecticide phorate. Mutat Res. 2012 May 15;744(2):125-34. doi: 10.1016/j.mrgentox.2012.01.001. Epub 2012 Jan 28. PMID: 22306305. 2. Cao T, Guo Y, Wang D, Liu Z, Huang S, Peng C, Wang S, Wang Y, Lu Q, Xiao F, Liang Z, Zheng S, Shen J, Wu Y, Lv Z, Ke Y. Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Antibiotics (Basel). 2022 Nov 9;11(11):1584. doi: 10.3390/antibiotics11111584. PMID: 36358236; PMCID: PMC9686891. 3. Ratn A, Awasthi Y, Kumar M, Singh SK, Tripathi R, Trivedi SP. Phorate induced oxidative stress, DNA damage and differential expression of p53, apaf-1 and cat genes in fish, Channa punctatus (Bloch, 1793). Chemosphere. 2017 Sep;182:382-391. doi: 10.1016/j.chemosphere.2017.05.008. Epub 2017 May 3. PMID: 28511133.
In vitro protocol:
1. Saquib Q, Musarrat J, Siddiqui MA, Dutta S, Dasgupta S, Giesy JP, Al-Khedhairy AA. Cytotoxic and necrotic responses in human amniotic epithelial (WISH) cells exposed to organophosphate insecticide phorate. Mutat Res. 2012 May 15;744(2):125-34. doi: 10.1016/j.mrgentox.2012.01.001. Epub 2012 Jan 28. PMID: 22306305.
In vivo protocol:
1. Cao T, Guo Y, Wang D, Liu Z, Huang S, Peng C, Wang S, Wang Y, Lu Q, Xiao F, Liang Z, Zheng S, Shen J, Wu Y, Lv Z, Ke Y. Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Antibiotics (Basel). 2022 Nov 9;11(11):1584. doi: 10.3390/antibiotics11111584. PMID: 36358236; PMCID: PMC9686891. 2. Ratn A, Awasthi Y, Kumar M, Singh SK, Tripathi R, Trivedi SP. Phorate induced oxidative stress, DNA damage and differential expression of p53, apaf-1 and cat genes in fish, Channa punctatus (Bloch, 1793). Chemosphere. 2017 Sep;182:382-391. doi: 10.1016/j.chemosphere.2017.05.008. Epub 2017 May 3. PMID: 28511133.
1: Li X, Qian H, Tao J, Cao M, Wang M, Zhai W. Preparation of Hybrid Magnetic Nanoparticles for Sensitive and Rapid Detection of Phorate Residue in Celery Using SERS Immunochromatography Assay. Nanomaterials (Basel). 2024 Jun 18;14(12):1046. doi: 10.3390/nano14121046. PMID: 38921922; PMCID: PMC11206780. 2: Karakuş F, Arzuk E, Ergüç A. Mitochondrial Impact of Organophosphate Pesticide-Induced Cardiotoxicity: An In Silico and In Vitro Study. Int J Toxicol. 2024 Jun 19:10915818241261624. doi: 10.1177/10915818241261624. Epub ahead of print. PMID: 38897602. 3: Oluwoyo T, Kocadal K, Saygi S, Battal D. Determination of pesticide residue content in fruits and vegetables from Lagos, Nigeria. Environ Anal Health Toxicol. 2024 Mar;39(1):e2024002-0. doi: 10.5620/eaht.2024002. Epub 2024 Feb 7. PMID: 38631394; PMCID: PMC11079411. 4: Ruan W, Peng Y, Liao R, Man Y, Tai Y, Tam NF, Zhang L, Dai Y, Yang Y. Removal, transformation and ecological risk assessment of pesticide in rural wastewater by field-scale horizontal flow constructed wetlands of treated effluent. Water Res. 2024 Jun 1;256:121568. doi: 10.1016/j.watres.2024.121568. Epub 2024 Apr 2. PMID: 38593607. 5: Kilonzi JM, Otieno S. Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation. Stress Biol. 2024 Feb 6;4(1):11. doi: 10.1007/s44154-023-00138-6. PMID: 38319394; PMCID: PMC10847075. 6: Sarker A, Yoo JH, Jeong WT. Environmental fate and metabolic transformation of two non-ionic pesticides in soil: Effect of biochar, moisture, and soil sterilization. Chemosphere. 2023 Dec;345:140458. doi: 10.1016/j.chemosphere.2023.140458. Epub 2023 Oct 14. Erratum in: Chemosphere. 2024 Feb;349:140965. doi: 10.1016/j.chemosphere.2023.140965. PMID: 37844696. 7: Prodhan MY, Rahman MB, Rahman A, Akbor MA, Ghosh S, Nahar MN, Simo, Shamsuzzoha M, Cho KM, Haque MA. Characterization of Growth-Promoting Activities of Consortia of Chlorpyrifos Mineralizing Endophytic Bacteria Naturally Harboring in Rice Plants-A Potential Bio-Stimulant to Develop a Safe and Sustainable Agriculture. Microorganisms. 2023 Jul 16;11(7):1821. doi: 10.3390/microorganisms11071821. PMID: 37512993; PMCID: PMC10385066. 8: Li G, Huang X, Peng C, Sun F. Highly Sensitive Fluorescence Detection of Three Organophosphorus Pesticides Based on Highly Bright DNA-Templated Silver Nanoclusters. Biosensors (Basel). 2023 May 5;13(5):520. doi: 10.3390/bios13050520. PMID: 37232881; PMCID: PMC10216281. 9: Cheropkina H, Catucci G, Cesano F, Marucco A, Gilardi G, Sadeghi SJ. Bioelectrochemical platform with human monooxygenases: FMO1 and CYP3A4 tandem reactions with phorate. Bioelectrochemistry. 2023 Apr;150:108327. doi: 10.1016/j.bioelechem.2022.108327. Epub 2022 Nov 23. PMID: 36446195. 10: Cao T, Guo Y, Wang D, Liu Z, Huang S, Peng C, Wang S, Wang Y, Lu Q, Xiao F, Liang Z, Zheng S, Shen J, Wu Y, Lv Z, Ke Y. Effect of Phorate on the Development of Hyperglycaemia in Mouse and Resistance Genes in Intestinal Microbiota. Antibiotics (Basel). 2022 Nov 9;11(11):1584. doi: 10.3390/antibiotics11111584. PMID: 36358236; PMCID: PMC9686891. 11: van Herk WG, Vernon RS, Goudis L, Mitchell T. Protection of Potatoes and Mortality of Wireworms (Agriotes obscurus) With Various Application Methods of Broflanilide, a Novel Meta-Diamide Insecticide. J Econ Entomol. 2022 Dec 14;115(6):1930-1946. doi: 10.1093/jee/toac152. PMID: 36222544. 12: Shen Z, Xu D, Wang G, Geng L, Xu R, Wang G, Guo Y, Sun X. Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. J Hazard Mater. 2022 Oct 15;440:129707. doi: 10.1016/j.jhazmat.2022.129707. Epub 2022 Aug 1. PMID: 35986944. 13: Li H, Huang X, Huang J, Bai M, Hu M, Guo Y, Sun X. Fluorescence Assay for Detecting Four Organophosphorus Pesticides Using Fluorescently Labeled Aptamer. Sensors (Basel). 2022 Jul 30;22(15):5712. doi: 10.3390/s22155712. PMID: 35957269; PMCID: PMC9371145. 14: Qi P, Wang J, Li H, Wu Y, Liu Z, Zheng B, Wang X. Fluffy ball-like magnetic covalent organic frameworks for adsorption and removal of organothiophosphate pesticides. Sci Total Environ. 2022 Sep 20;840:156529. doi: 10.1016/j.scitotenv.2022.156529. Epub 2022 Jun 7. PMID: 35688246. 15: Simonelli A, Carfora A, Basilicata P, Liguori B, Mascolo P, Policino F, Niola M, Campobasso CP. Suicide by Pesticide (Phorate) Ingestion: Case Report and Review of Literature. Toxics. 2022 Apr 21;10(5):205. doi: 10.3390/toxics10050205. PMID: 35622619; PMCID: PMC9146379. 16: Shikha S, Dureja S, Sapra R, Babu J, Haridas V, Pattanayek SK. Interaction of borohydride stabilized silver nanoparticles with sulfur-containing organophosphates. RSC Adv. 2021 Sep 30;11(51):32286-32294. doi: 10.1039/d1ra06911j. PMID: 35495484; PMCID: PMC9041980. 17: Yu H, Lyu Q, Chen X, Guo D, He D, Jia X, Han L, Xiao W. Nylon membranes modified by gold nanoparticles as surface-enhanced Raman spectroscopy substrates for several pesticides detection. RSC Adv. 2021 Jul 9;11(39):24183-24189. doi: 10.1039/d1ra03490a. PMID: 35479016; PMCID: PMC9036823. 18: Goggin DE, Cawthray GR, Busi R, Porri A, Beckie HJ. Enhanced production of water-soluble cinmethylin metabolites by Lolium rigidum populations with reduced cinmethylin sensitivity. Pest Manag Sci. 2022 Jul;78(7):3173-3182. doi: 10.1002/ps.6947. Epub 2022 May 12. PMID: 35470951; PMCID: PMC9325456. 19: Nazir S, Ali MN, Tantray JA, Baba IA, Jan A, Popescu SM, Paray BA, Gulnaz A. Study of Ultrastructural Abnormalities in the Renal Cells of Cyprinus carpio Induced by Toxicants. Toxics. 2022 Apr 2;10(4):177. doi: 10.3390/toxics10040177. PMID: 35448438; PMCID: PMC9027223. 20: Chen JM, Yan H, Zhou GS, Guo S, Jin L, Duan JA. [Research progress on pesticide residues of Angelicae Sinensis Radix]. Zhongguo Zhong Yao Za Zhi. 2022 Mar;47(6):1445-1452. Chinese. doi: 10.19540/j.cnki.cjcmm.20211220.102. PMID: 35347942.