MedKoo Cat#: 526438 | Name: Psora-4
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Psora-4 is an inhibitor of voltage-gated potassium channels (Kv1.3). It is selective for Kv1.3 but does inhibit the Kv1.5 channel. Psora 4 selectively binds to the C-type inactivated state of the Kv1.3 channel and inhibits potassium current in a use-dependent manner. It has immunosuppressive activity, inhibiting proliferation of human and rat myelin-specific effector memory T cells in vitro.

Chemical Structure

Psora-4
Psora-4
CAS#724709-68-6

Theoretical Analysis

MedKoo Cat#: 526438

Name: Psora-4

CAS#: 724709-68-6

Chemical Formula: C21H18O4

Exact Mass: 334.1205

Molecular Weight: 334.37

Elemental Analysis: C, 75.43; H, 5.43; O, 19.14

Price and Availability

Size Price Availability Quantity
1mg USD 350.00
5mg USD 550.00
10mg USD 800.00
25mg USD 1,300.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Psora-4
IUPAC/Chemical Name
5-(4-Phenylbutoxy)psoralen
InChi Key
JJAWGNIQEOFURP-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H18O4/c22-20-10-9-16-19(25-20)14-18-17(11-13-23-18)21(16)24-12-5-4-8-15-6-2-1-3-7-15/h1-3,6-7,9-11,13-14H,4-5,8,12H2
SMILES Code
O=C1OC2=CC3=C(C=CO3)C(OCCCCC4=CC=CC=C4)=C2C=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Psora-4 is an inhibitor of Kv1.3 (EC50 = 3 nM). It is selective for Kv1.3 over Kv1.1, Kv1.2, Kv1.4, Kv1.7, and Kv3.1 channels (EC50s = 62, 49, 202, 100, and 1,500 nM, respectively).
In vitro activity:
Psora-4 blocked Kv1.3 in a use-dependent manner, with a Hill coefficient of 2 and an EC50 value of 3 nM. Psora-4 exhibited 17- to 70-fold selectivity for Kv1.3 over Kv1.1, Kv1.2, Kv1.4, and Kv1.7 with the exception of Kv1.5 (EC50, 7.7 nM) and showed no effect on Kv3.1; IKCa1, SK1-SK3, and BKCa; or the neuronal NaV1.2 channel. Reference: Mol Pharmacol. 2004 Jun;65(6):1364-74. https://pubmed.ncbi.nlm.nih.gov/15155830/
In vivo activity:
Psora-4 extends lifespan in C. elegans. This study reports that Psora-4 increases the production of free radicals and modulates genes related to stress response. Its effect intersects closely with the target set of caloric restriction genes, suggesting that Psora-4, in part, acts as caloric restriction mimetic. Reference: Geroscience. 2022 Apr;44(2):1029-1046. https://pubmed.ncbi.nlm.nih.gov/33988831/
Solvent mg/mL mM
Solubility
DMSO 10.0 29.91
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 334.37 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Hamilton DL, Beall C, Jeromson S, Chevtzoff C, Cuthbertson DJ, Ashford ML. Kv1.3 inhibitors have differential effects on glucose uptake and AMPK activity in skeletal muscle cell lines and mouse ex vivo skeletal muscle. J Physiol Sci. 2014 Jan;64(1):13-20. doi: 10.1007/s12576-013-0285-4. Epub 2013 Sep 17. PMID: 24043354. 2. Vennekamp J, Wulff H, Beeton C, Calabresi PA, Grissmer S, Hänsel W, Chandy KG. Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol. 2004 Jun;65(6):1364-74. doi: 10.1124/mol.65.6.1364. PMID: 15155830. 3. Labbaf A, Dellin M, Komadowski M, Chetkovich DM, Decher N, Pape HC, Seebohm G, Budde T, Zobeiri M. Characterization of Kv1.2-mediated outward current in TRIP8b-deficient mice. Biol Chem. 2023 Mar 1;404(4):291-302. doi: 10.1515/hsz-2023-0116. PMID: 36852869. 4. Admasu TD, Barardo D, Ng LF, Batchu KC, Cazenave-Gassiot A, Wenk MR, Gruber J. A small-molecule Psora-4 acts as a caloric restriction mimetic to promote longevity in C. elegans. Geroscience. 2022 Apr;44(2):1029-1046. doi: 10.1007/s11357-021-00374-6. Epub 2021 May 14. PMID: 33988831; PMCID: PMC9135947.
In vitro protocol:
1. Hamilton DL, Beall C, Jeromson S, Chevtzoff C, Cuthbertson DJ, Ashford ML. Kv1.3 inhibitors have differential effects on glucose uptake and AMPK activity in skeletal muscle cell lines and mouse ex vivo skeletal muscle. J Physiol Sci. 2014 Jan;64(1):13-20. doi: 10.1007/s12576-013-0285-4. Epub 2013 Sep 17. PMID: 24043354. 2. Vennekamp J, Wulff H, Beeton C, Calabresi PA, Grissmer S, Hänsel W, Chandy KG. Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol. 2004 Jun;65(6):1364-74. doi: 10.1124/mol.65.6.1364. PMID: 15155830.
In vivo protocol:
1. Labbaf A, Dellin M, Komadowski M, Chetkovich DM, Decher N, Pape HC, Seebohm G, Budde T, Zobeiri M. Characterization of Kv1.2-mediated outward current in TRIP8b-deficient mice. Biol Chem. 2023 Mar 1;404(4):291-302. doi: 10.1515/hsz-2023-0116. PMID: 36852869. 2. Admasu TD, Barardo D, Ng LF, Batchu KC, Cazenave-Gassiot A, Wenk MR, Gruber J. A small-molecule Psora-4 acts as a caloric restriction mimetic to promote longevity in C. elegans. Geroscience. 2022 Apr;44(2):1029-1046. doi: 10.1007/s11357-021-00374-6. Epub 2021 May 14. PMID: 33988831; PMCID: PMC9135947.
1: Sastre D, Colomer-Molera M, de Benito-Bueno A, Valenzuela C, Fernández- Ballester G, Felipe A. KCNE4-dependent modulation of Kv1.3 pharmacology. Biochem Pharmacol. 2024 Aug;226:116368. doi: 10.1016/j.bcp.2024.116368. Epub 2024 Jun 14. PMID: 38880360. 2: Schilardi G, Kralik J, Kleinlogel S. Selective Block of Upregulated Kv1.3 Potassium Channels in ON-Bipolar Cells of the Blind Retina Enhances Optogenetically Restored Signaling. Int J Mol Sci. 2023 Sep 18;24(18):14207. doi: 10.3390/ijms241814207. PMID: 37762510; PMCID: PMC10531754. 3: Sala C, Staderini M, Lottini T, Duranti C, Angelini G, Constantin G, Arcangeli A. Expression of the ether-a-gò-gò-related gene 1 channel during B and T lymphocyte development: role in BCR and TCR signaling. Front Immunol. 2023 Sep 8;14:1111471. doi: 10.3389/fimmu.2023.1111471. PMID: 37744334; PMCID: PMC10515723. 4: Labbaf A, Dellin M, Komadowski M, Chetkovich DM, Decher N, Pape HC, Seebohm G, Budde T, Zobeiri M. Characterization of Kv1.2-mediated outward current in TRIP8b-deficient mice. Biol Chem. 2023 Mar 1;404(4):291-302. doi: 10.1515/hsz-2023-0116. PMID: 36852869. 5: Chen YJ, Cui Y, Singh L, Wulff H. The potassium channel Kv1.3 as a therapeutic target for immunocytoprotection after reperfusion. Ann Clin Transl Neurol. 2021 Oct;8(10):2070-2082. doi: 10.1002/acn3.51456. Epub 2021 Oct 7. PMID: 34617690; PMCID: PMC8528456. 6: Admasu TD, Barardo D, Ng LF, Batchu KC, Cazenave-Gassiot A, Wenk MR, Gruber J. A small-molecule Psora-4 acts as a caloric restriction mimetic to promote longevity in C. elegans. Geroscience. 2022 Apr;44(2):1029-1046. doi: 10.1007/s11357-021-00374-6. Epub 2021 May 14. PMID: 33988831; PMCID: PMC9135947. 7: Montalbano A, Sala C, Abrardo C, Murciano N, Jahanfar F, D'Amico M, Bertoni F, Becchetti A, Arcangeli A. Data describing the effects of potassium channels modulators on outward currents measured in human lymphoma cell lines. Data Brief. 2020 Dec 21;34:106668. doi: 10.1016/j.dib.2020.106668. PMID: 33385031; PMCID: PMC7772536. 8: Lang Y, Li F, Liu Q, Xia Z, Ji Z, Hu J, Cheng Y, Gao M, Sun F, Shen B, Xie C, Yi W, Wu Y, Yao J, Cao Z. The Kv1.3 ion channel acts as a host factor restricting viral entry. FASEB J. 2021 Feb;35(2):e20995. doi: 10.1096/fj.202000879RR. Epub 2020 Sep 10. PMID: 32910509. 9: Mei Y, Fang C, Ding S, Liu X, Hu J, Xu J, Mei Q. PAP-1 ameliorates DSS- induced colitis with involvement of NLRP3 inflammasome pathway. Int Immunopharmacol. 2019 Oct;75:105776. doi: 10.1016/j.intimp.2019.105776. Epub 2019 Jul 24. PMID: 31351364. 10: Admasu TD, Batchu KC, Ng LF, Cazenave-Gassiot A, Wenk MR, Gruber J. Lipid profiling of C. elegans strains administered pro-longevity drugs and drug combinations. Sci Data. 2018 Oct 23;5:180231. doi: 10.1038/sdata.2018.231. PMID: 30351306; PMCID: PMC6198751. 11: Admasu TD, Chaithanya Batchu K, Barardo D, Ng LF, Lam VYM, Xiao L, Cazenave- Gassiot A, Wenk MR, Tolwinski NS, Gruber J. Drug Synergy Slows Aging and Improves Healthspan through IGF and SREBP Lipid Signaling. Dev Cell. 2018 Oct 8;47(1):67-79.e5. doi: 10.1016/j.devcel.2018.09.001. Epub 2018 Sep 27. PMID: 30269951. 12: Maezawa I, Nguyen HM, Di Lucente J, Jenkins DP, Singh V, Hilt S, Kim K, Rangaraju S, Levey AI, Wulff H, Jin LW. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept. Brain. 2018 Feb 1;141(2):596-612. doi: 10.1093/brain/awx346. PMID: 29272333; PMCID: PMC5837198. 13: Venturini E, Leanza L, Azzolini M, Kadow S, Mattarei A, Weller M, Tabatabai G, Edwards MJ, Zoratti M, Paradisi C, Szabò I, Gulbins E, Becker KA. Targeting the Potassium Channel Kv1.3 Kills Glioblastoma Cells. Neurosignals. 2017;25(1):26-38. doi: 10.1159/000480643. Epub 2017 Sep 1. PMID: 28869943. 14: Kidd MW, Bulley S, Jaggar JH. Angiotensin II reduces the surface abundance of KV 1.5 channels in arterial myocytes to stimulate vasoconstriction. J Physiol. 2017 Mar 1;595(5):1607-1618. doi: 10.1113/JP272893. Epub 2017 Feb 5. PMID: 27958660; PMCID: PMC5330887. 15: Nishijima Y, Cao S, Chabowski DS, Korishettar A, Ge A, Zheng X, Sparapani R, Gutterman DD, Zhang DX. Contribution of KV1.5 Channel to Hydrogen Peroxide-Induced Human Arteriolar Dilation and Its Modulation by Coronary Artery Disease. Circ Res. 2017 Feb 17;120(4):658-669. doi: 10.1161/CIRCRESAHA.116.309491. Epub 2016 Nov 21. PMID: 27872049; PMCID: PMC5315616. 16: Zhou YY, Hou GQ, He SW, Xiao Z, Xu HJ, Qiu YT, Jiang S, Zheng H, Li ZY. Psora-4, a Kv1.3 Blocker, Enhances Differentiation and Maturation in Neural Progenitor Cells. CNS Neurosci Ther. 2015 Jul;21(7):558-67. doi: 10.1111/cns.12402. Epub 2015 May 15. PMID: 25976092; PMCID: PMC6495590. 17: Ueyama A, Imura K, Kasai-Yamamoto E, Tai N, Nagira M, Shichijo M, Yasui K. Kv1.3 blockers ameliorate allergic contact dermatitis by preferentially suppressing effector memory T cells in a rat model. Clin Exp Dermatol. 2013 Dec;38(8):897-903. doi: 10.1111/ced.12097. PMID: 24252082. 18: Hamilton DL, Beall C, Jeromson S, Chevtzoff C, Cuthbertson DJ, Ashford ML. Kv1.3 inhibitors have differential effects on glucose uptake and AMPK activity in skeletal muscle cell lines and mouse ex vivo skeletal muscle. J Physiol Sci. 2014 Jan;64(1):13-20. doi: 10.1007/s12576-013-0285-4. Epub 2013 Sep 17. PMID: 24043354; PMCID: PMC10717203. 19: Wulff H, Yarov-Yarovoy V. Channels: Sticking to nooks and crannies. Nat Chem Biol. 2013 Aug;9(8):473-4. doi: 10.1038/nchembio.1292. PMID: 23868316. 20: Marzian S, Stansfeld PJ, Rapedius M, Rinné S, Nematian-Ardestani E, Abbruzzese JL, Steinmeyer K, Sansom MS, Sanguinetti MC, Baukrowitz T, Decher N. Side pockets provide the basis for a new mechanism of Kv channel-specific inhibition. Nat Chem Biol. 2013 Aug;9(8):507-13. doi: 10.1038/nchembio.1271. Epub 2013 Jun 2. PMID: 23728494; PMCID: PMC4539245.