1: Lin Z, Lin Y, Lin J, Zhang Y, Fang S. Trace Analysis of Fenbutatin Oxide in Soil and Plant- and Animal-Derived Foods Using Modified QuEChERS Coupled with HPLC-MS/MS. ACS Omega. 2021 Apr 6;6(15):10260-10265. doi: 10.1021/acsomega.1c00593. PMID: 34056180; PMCID: PMC8153780.
2: Kaufman JL, Gasparetto C, Schjesvold FH, Moreau P, Touzeau C, Facon T, Boise LH, Jiang Y, Yang X, Dunbar F, Vishwamitra D, Unger S, Macartney T, Pesko J, Yu Y, Salem AH, Ross JA, Hong WJ, Maciag PC, Pauff JM, Kumar S. Targeting BCL-2 with venetoclax and dexamethasone in patients with relapsed/refractory t(11;14) multiple myeloma. Am J Hematol. 2021 Apr 1;96(4):418-427. doi: 10.1002/ajh.26083. Epub 2021 Jan 19. PMID: 33368455; PMCID: PMC7986778.
3: De Beer B, Villacis-Perez E, Khalighi M, Saalwaechter C, Vandenhole M, Jonckheere W, Ismaeil I, Geibel S, Van Leeuwen T, Dermauw W. QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae. Insect Biochem Mol Biol. 2022 Jun;145:103757. doi: 10.1016/j.ibmb.2022.103757. Epub 2022 Mar 14. PMID: 35301092.
4: Teodoro AV, Pallini A, Oliveira C. Sub-lethal effects of fenbutatin oxide on prey location by the predatory mite Iphiseiodes zuluagai (Acari: Phytoseiidae). Exp Appl Acarol. 2009 Apr;47(4):293-9. doi: 10.1007/s10493-008-9219-x. Epub 2008 Nov 14. PMID: 19009359.
5: Inglesfield C. Fenbutatin oxide and chlorfenvinphos effects on the entomophagous arthropod fauna of citrus. Bull Environ Contam Toxicol. 1987 May;38(5):813-9. doi: 10.1007/BF01616706. PMID: 3580598.
6: Barnes KA, Fussell RJ, Startin JR, Mobbs HJ, James R, Reynolds SL. Determination of the pesticide fenbutatin oxide in tomatoes, cucumbers and bananas by high performance liquid chromatographic/atmospheric pressure chemical ionization-mass spectrometry. Rapid Commun Mass Spectrom. 1997;11(2):159-64. doi: 10.1002/(SICI)1097-0231(19970131)11:2<159::AID-RCM730>3.0.CO;2-O. PMID: 9050264.
7: European Food Safety Authority (EFSA); Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A, Villamar- Bouza L. Review of the existing maximum residue levels for fenbutatin oxide according to Article 12 of Regulation (EC) No 396/2005. EFSA J. 2017 Dec 12;15(12):e05091. doi: 10.2903/j.efsa.2017.5091. PMID: 32625377; PMCID: PMC7010134.
8: Montes R, Canosa P, Lamas JP, Piñeiro A, Orriols I, Cela R, Rodríguez I. Matrix solid-phase dispersion and solid-phase microextraction applied to study the distribution of fenbutatin oxide in grapes and white wine. Anal Bioanal Chem. 2009 Dec;395(8):2601-10. doi: 10.1007/s00216-009-3175-0. Epub 2009 Oct 6. PMID: 19806346.
9: Reddy PS, Pushpalatha T, Reddy PS. Reduction of spermatogenesis and steroidogenesis in mice after fentin and fenbutatin administration. Toxicol Lett. 2006 Sep 30;166(1):53-9. doi: 10.1016/j.toxlet.2006.05.012. Epub 2006 May 27. PMID: 16806747.
10: Hoy MA, Conley J, Robinson W. Cyhexatin and fenbutatin-oxide resistance in Pacific spider mite (Acari: Tetranychidae): stability and mode of inheritance. J Econ Entomol. 1988 Feb;81(1):57-64. doi: 10.1093/jee/81.1.57. PMID: 3351085.
11: Li S, Qiao K, Jiang Y, Wu Q, Coffin S, Gui W, Zhu G. Disruptive effects of two organotin pesticides on the thyroid signaling pathway in Xenopus laevis during metamorphosis. Sci Total Environ. 2019 Dec 20;697:134140. doi: 10.1016/j.scitotenv.2019.134140. Epub 2019 Aug 27. PMID: 31476497.
12: Drábová L, Mráz P, Krátký F, Uttl L, Vacková P, Schusterova D, Zadražilová B, Kadlec V, Kocourek V, Hajšlová J. Assessment of pesticide residues in citrus fruit on the Czech market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2022 Feb;39(2):311-319. doi: 10.1080/19440049.2021.2001579. Epub 2021 Dec 6. PMID: 34871518.
13: Acosta-Dacal A, Hernández-Marrero ME, Rial-Berriel C, Díaz-Díaz R, Bernal- Suárez MDM, Zumbado M, Henríquez-Hernández LA, Boada LD, Luzardo OP. Comparative study of organic contaminants in agricultural soils at the archipelagos of the Macaronesia. Environ Pollut. 2022 May 15;301:118979. doi: 10.1016/j.envpol.2022.118979. Epub 2022 Feb 9. PMID: 35150798.
14: Cui Z, Sun Y, Ge N, Zhang J, Liu Y, Li A, Cao Y. [Simultaneous determination of cyhexatin, triphenyltin and fenbutatin oxide residues in fruits and vegetables by Grignard derivatization and gas chromatography coupled to tandem mass spectrometry]. Se Pu. 2014 Aug;32(8):855-60. Chinese. doi: 10.3724/sp.j.1123.2014.04031. PMID: 25434122.
15: Teodoro AV, Fadini MA, Lemos WP, Guedes RN, Pallini A. Lethal and sub-lethal selectivity of fenbutatin oxide and sulfur to the predator Iphiseiodes zuluagai (Acari: Phytoseiidae) and its prey, Oligonychus ilicis (Acari: Tetranychidae), in Brazilian coffee plantations. Exp Appl Acarol. 2005;36(1-2):61-70. doi: 10.1007/s10493-005-0507-4. PMID: 16082924.
16: Liu Z, Guo P, Wang Y, Zhan C, Zuo H. [Determination of fenbutatin oxide residue in orange products by gas chromatography]. Se Pu. 2009 Nov;27(6):760-3. Chinese. PMID: 20352927.
17: Devos C, Moens L, Sandra P. Determination of the acaricide fenbutatin oxide in water samples by automated headspace-SPME-GC/MS. J Sep Sci. 2005 May;28(7):665-8. doi: 10.1002/jssc.200400105. PMID: 15912737.
18: Simma EA, Hailu B, Jonckheere W, Rogiers C, Duchateau L, Dermauw W, Van Leeuwen T. Acaricide resistance status and identification of resistance mutations in populations of the two-spotted spider mite Tetranychus urticae from Ethiopia. Exp Appl Acarol. 2020 Dec;82(4):475-491. doi: 10.1007/s10493-020-00567-2. Epub 2020 Nov 10. PMID: 33174613.
19: Canosa P, Montes R, Lamas JP, García-López M, Orriols I, Rodríguez I. Pressurized liquid extraction followed by gas chromatography with atomic emission detection for the determination of fenbutatin oxide in soil samples. Talanta. 2009 Aug 15;79(3):598-602. doi: 10.1016/j.talanta.2009.04.033. Epub 2009 May 3. PMID: 19576418.
20: Ma J. Differential sensitivity of three cyanobacterial and five green algal species to organotins and pyrethroids pesticides. Sci Total Environ. 2005 Apr 1;341(1-3):109-17. doi: 10.1016/j.scitotenv.2004.09.028. Epub 2005 Jan 20. PMID: 15833245.