1: Moon DO. MetAP2 as a Therapeutic Target for Obesity and Type 2 Diabetes: Structural Insights, Mechanistic Roles, and Inhibitor Development. Biomolecules. 2024 Dec 10;14(12):1572. doi: 10.3390/biom14121572. PMID: 39766279; PMCID: PMC11673396.
2: Das BC, Chokkalingam P, Shareef MA, Shukla S, Das S, Saito M, Weiss LM. Methionine aminopeptidases: Potential therapeutic target for microsporidia and other microbes. J Eukaryot Microbiol. 2024 Sep-Oct;71(5):e13036. doi: 10.1111/jeu.13036. Epub 2024 Jul 22. PMID: 39036929; PMCID: PMC11576263.
3: Lee HJ, Jin BY, Park MR, Kim NH, Seo KS, Jeong YT, Wada T, Lee JS, Choi SH, Kim DH. Inhibition of adipose tissue angiogenesis prevents rebound weight gain after caloric restriction in mice fed a high-fat diet. Life Sci. 2023 Nov 1;332:122101. doi: 10.1016/j.lfs.2023.122101. Epub 2023 Sep 18. PMID: 37730110.
4: Steinberg E, Esa R, Schwob O, Stern T, Orehov N, Zamir G, Hubert A, Panigrahy D, Benny O. Methionine aminopeptidase 2 as a potential target in pancreatic ductal adenocarcinoma. Am J Transl Res. 2022 Sep 15;14(9):6243-6255. PMID: 36247237; PMCID: PMC9556484.
5: Xiong Y, Xiong C, Li P, Shan X. Rutaecarpine prevents the malignant biological properties of breast cancer cells by the miR-149-3p/S100A4 axis. Ann Transl Med. 2022 Sep;10(17):930. doi: 10.21037/atm-22-3765. PMID: 36172090; PMCID: PMC9511192.
6: Shimizu S, Kawahara R, Simizu S. Methionine aminopeptidase‑2 is a pivotal regulator of vasculogenic mimicry. Oncol Rep. 2022 Feb;47(2):31. doi: 10.3892/or.2021.8242. Epub 2021 Dec 16. PMID: 34913067; PMCID: PMC8717127.
7: Xie J, Rice MA, Chen Z, Cheng Y, Hsu EC, Chen M, Song G, Cui L, Zhou K, Castillo JB, Zhang CA, Shen B, Chin FT, Kunder CA, Brooks JD, Stoyanova T, Rao J. In Vivo Imaging of Methionine Aminopeptidase II for Prostate Cancer Risk Stratification. Cancer Res. 2021 May 1;81(9):2510-2521. doi: 10.1158/0008-5472.CAN-20-2969. Epub 2021 Feb 26. PMID: 33637565; PMCID: PMC8137584.
8: Craig SL, Gault VA, Flatt PR, Irwin N. The methionine aminopeptidase 2 inhibitor, TNP-470, enhances the antidiabetic properties of sitagliptin in mice by upregulating xenin. Biochem Pharmacol. 2021 Jan;183:114355. doi: 10.1016/j.bcp.2020.114355. Epub 2020 Dec 3. PMID: 33279496.
9: Esa R, Steinberg E, Dror D, Schwob O, Khajavi M, Maoz M, Kinarty Y, Inbal A, Zick A, Benny O. The Role of Methionine Aminopeptidase 2 in Lymphangiogenesis. Int J Mol Sci. 2020 Jul 21;21(14):5148. doi: 10.3390/ijms21145148. PMID: 32708166; PMCID: PMC7403956.
10: Nijhawans P, Behl T, Bhardwaj S. Angiogenesis in obesity. Biomed Pharmacother. 2020 Jun;126:110103. doi: 10.1016/j.biopha.2020.110103. Epub 2020 Mar 19. PMID: 32200253.
11: Saili KS, Franzosa JA, Baker NC, Ellis-Hutchings RG, Settivari RS, Carney EW, Spencer R, Zurlinden TJ, Kleinstreuer NC, Li S, Xia M, Knudsen TB. Systems Modeling of Developmental Vascular Toxicity. Curr Opin Toxicol. 2019 Jun 1;15(1):55-63. doi: 10.1016/j.cotox.2019.04.004. PMID: 32030360; PMCID: PMC7004230.
12: Kidoikhammouan S, Seubwai W, Silsirivanit A, Wongkham S, Sawanyawisuth K, Wongkham C. Blocking of methionine aminopeptidase-2 by TNP-470 induces apoptosis and increases chemosensitivity of cholangiocarcinoma. J Cancer Res Ther. 2019 Jan-Mar;15(1):148-152. doi: 10.4103/jcrt.JCRT_250_17. PMID: 30880771.
13: Pillalamarri V, Arya T, Haque N, Bala SC, Marapaka AK, Addlagatta A. Discovery of natural product ovalicin sensitive type 1 methionine aminopeptidases: molecular and structural basis. Biochem J. 2019 Mar 22;476(6):991-1003. doi: 10.1042/BCJ20180874. PMID: 30837307.
14: Li X, Xue Y, Pang L, ShangGuan Z, Pan Y. Lysimachia Capillipes Inhibit Adipogenesis via Angiogenesis Inhibition. Drug Res (Stuttg). 2019 May;69(5):284-290. doi: 10.1055/a-0672-0707. Epub 2018 Sep 7. PMID: 30193395.
15: Meher RK, Naik MR, Bastia B, Naik PK. Comparative evaluation of anti- angiogenic effects of noscapine derivatives. Bioinformation. 2018 May 31;14(5):236-240. doi: 10.6026/97320630014236. PMID: 30108421; PMCID: PMC6077819.
16: Ho DH, Wong RH. TNP-470 skews DC differentiation to Th1-stimulatory phenotypes and can serve as a novel adjuvant in a cancer vaccine. Blood Adv. 2018 Jul 24;2(14):1664-1679. doi: 10.1182/bloodadvances.2017013433. PMID: 30012585; PMCID: PMC6058227.
17: Ehrenberg M, Benny O. Evolving multidimensional pharmacological approaches to CNV therapy in AMD. Curr Eye Res. 2018 Feb;43(2):147-154. doi: 10.1080/02713683.2017.1385088. Epub 2017 Nov 7. PMID: 29111834.
18: Ellis-Hutchings RG, Settivari RS, McCoy AT, Kleinstreuer N, Franzosa J, Knudsen TB, Carney EW. Embryonic vascular disruption adverse outcomes: Linking high throughput signaling signatures with functional consequences. Reprod Toxicol. 2017 Jun;70:82-96. doi: 10.1016/j.reprotox.2017.05.005. Epub 2017 May 17. PMID: 28527947; PMCID: PMC6706853.
19: Ellis-Hutchings RG, Settivari RS, McCoy AT, Kleinstreuer N, Franzosa J, Knudsen TB, Carney EW. Embryonic vascular disruption adverse outcomes: Linking high-throughput signaling signatures with functional consequences. Reprod Toxicol. 2017 Aug;71:16-31. doi: 10.1016/j.reprotox.2017.04.003. Epub 2017 Apr 13. PMID: 28414088.
20: Bragdon B, Lam S, Aly S, Femia A, Clark A, Hussein A, Morgan EF, Gerstenfeld LC. Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone. 2017 Aug;101:49-61. doi: 10.1016/j.bone.2017.04.002. Epub 2017 Apr 12. PMID: 28412469; PMCID: PMC5500242.