MedKoo Cat#: 561443 | Name: Rifampicin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Rifampicin is a semisynthetic antibiotic produced from Streptomyces mediterranei with broad antibacterial spectrum. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme.

Chemical Structure

Rifampicin
Rifampicin
CAS#13292-46-1

Theoretical Analysis

MedKoo Cat#: 561443

Name: Rifampicin

CAS#: 13292-46-1

Chemical Formula: C43H58N4O12

Exact Mass: 822.4051

Molecular Weight: 822.95

Elemental Analysis: C, 62.76; H, 7.10; N, 6.81; O, 23.33

Price and Availability

Size Price Availability Quantity
5g USD 450.00 2 Weeks
10g USD 750.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Rifampicin; Rifadin; Rifampin; Rimactane; Rimactan; Tubocin; Archidyn; Arficin; Arzide; Benemicin; Doloresum; Eremfat; Fenampicin; Sinerdol;
IUPAC/Chemical Name
(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-26-{(E)-[(4-methylpiperazin-1-yl)imino]methyl}-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.1(4,7).0(5,28)]triaconta-1(28),2,4,9,19,21,25(29),26-octaen-13-yl acetate
InChi Key
JQXXHWHPUNPDRT-WLSIYKJHSA-N
InChi Code
InChI=1S/C43H58N4O12/c1-21-12-11-13-22(2)42(55)45-33-28(20-44-47-17-15-46(9)16-18-47)37(52)30-31(38(33)53)36(51)26(6)40-32(30)41(54)43(8,59-40)57-19-14-29(56-10)23(3)39(58-27(7)48)25(5)35(50)24(4)34(21)49/h11-14,19-21,23-25,29,34-35,39,49-53H,15-18H2,1-10H3,(H,45,55)/b12-11+,19-14+,22-13-,44-20+/t21-,23+,24+,25+,29-,34-,35+,39+,43-/m0/s1
SMILES Code
CC(O[C@@H]([C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C/C=C(C)\C(N1)=O)[C@H](C)[C@@H](OC)/C=C/O[C@](O2)(C)C(C3=C2C(C)=C(O)C4=C3C(O)=C(/C=N/N5CCN(C)CC5)C1=C4O)=O)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Rifampicin inhibits IκBα degradation and mitogen-activated protein kinase (MAPK) phosphorylation. Rifampicin is found to bind to human MD-2 in a concentration-dependent manner. Rifampicin inhibits NF-κB activation induced by LPS in a dose-dependent manner, with an IC50 of 44.1 μM in Blue hTLR4 293 cells (A) and immunocompetent microgial BV-2 cell. Rifampicin inhibits NO production induced by LPS (200 ng/ml) in a dose-dependent manner in BV-2 cells, with an IC50 of 21.2 μM. Rifampicin suppresses LPS induced TNF-α and IL-1β production in both microglia BV-2 and RAW 264.7 macrophage cells. Rifampicin (50 μg/mL) significantly reduces the CFU counts of stationary-phase cultures and reduces the CFU counts of the log-phase culture to zero.
In vitro activity:
Rifampin alters the expression of many of the clinically relevant hepatic drug transporters in vitro, which may provide a rational basis for understanding rifampin-induced drug-drug interactions reported in vivo. Reference: Front Pharmacol. 2016 Apr 26;7:111. https://pubmed.ncbi.nlm.nih.gov/27199754/
In vivo activity:
These study findings suggest that administering high-dose rifampin is necessary to achieve optimal bone concentrations, potentially shortening and improving treatments for Staphylococcus aureus orthopedic implant infections. S. aureus is a major human pathogen causing serious implant–associated infections. Reference: Sci Transl Med. 2021 Dec;13(622):eabl6851. https://pubmed.ncbi.nlm.nih.gov/34851697/
Solvent mg/mL mM
Solubility
DMSO 100.0 121.52
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 822.95 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Lahiri N, Shah RR, Layre E, Young D, Ford C, Murray MB, Fortune SM, Moody DB. Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis. J Biol Chem. 2016 Jul 1;291(27):14248-14256. doi: 10.1074/jbc.M116.716704. Epub 2016 May 10. PMID: 27226566; PMCID: PMC4933180. 2. Benson EA, Eadon MT, Desta Z, Liu Y, Lin H, Burgess KS, Segar MW, Gaedigk A, Skaar TC. Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol. 2016 Apr 26;7:111. doi: 10.3389/fphar.2016.00111. PMID: 27199754; PMCID: PMC4845040. 3. Gordon O, Lee DE, Liu B, Langevin B, Ordonez AA, Dikeman DA, Shafiq B, Thompson JM, Sponseller PD, Flavahan K, Lodge MA, Rowe SP, Dannals RF, Ruiz-Bedoya CA, Read TD, Peloquin CA, Archer NK, Miller LS, Davis KM, Gobburu JVS, Jain SK. Dynamic PET-facilitated modeling and high-dose rifampin regimens for Staphylococcus aureus orthopedic implant-associated infections. Sci Transl Med. 2021 Dec;13(622):eabl6851. doi: 10.1126/scitranslmed.abl6851. Epub 2021 Dec 1. PMID: 34851697; PMCID: PMC8693472. 2. Wang X, Grace PM, Pham MN, Cheng K, Strand KA, Smith C, Li J, Watkins LR, Yin H. Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J. 2013 Jul;27(7):2713-22. doi: 10.1096/fj.12-222992. Epub 2013 Apr 8. PMID: 23568774; PMCID: PMC3688759.
In vitro protocol:
1. Lahiri N, Shah RR, Layre E, Young D, Ford C, Murray MB, Fortune SM, Moody DB. Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis. J Biol Chem. 2016 Jul 1;291(27):14248-14256. doi: 10.1074/jbc.M116.716704. Epub 2016 May 10. PMID: 27226566; PMCID: PMC4933180. 2. Benson EA, Eadon MT, Desta Z, Liu Y, Lin H, Burgess KS, Segar MW, Gaedigk A, Skaar TC. Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol. 2016 Apr 26;7:111. doi: 10.3389/fphar.2016.00111. PMID: 27199754; PMCID: PMC4845040.
In vivo protocol:
1. Gordon O, Lee DE, Liu B, Langevin B, Ordonez AA, Dikeman DA, Shafiq B, Thompson JM, Sponseller PD, Flavahan K, Lodge MA, Rowe SP, Dannals RF, Ruiz-Bedoya CA, Read TD, Peloquin CA, Archer NK, Miller LS, Davis KM, Gobburu JVS, Jain SK. Dynamic PET-facilitated modeling and high-dose rifampin regimens for Staphylococcus aureus orthopedic implant-associated infections. Sci Transl Med. 2021 Dec;13(622):eabl6851. doi: 10.1126/scitranslmed.abl6851. Epub 2021 Dec 1. PMID: 34851697; PMCID: PMC8693472. 2. Wang X, Grace PM, Pham MN, Cheng K, Strand KA, Smith C, Li J, Watkins LR, Yin H. Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J. 2013 Jul;27(7):2713-22. doi: 10.1096/fj.12-222992. Epub 2013 Apr 8. PMID: 23568774; PMCID: PMC3688759.
1: Bourgi K, Fiske C, Sterling TR. Tuberculosis Meningitis. Curr Infect Dis Rep. 2017 Sep 11;19(11):39. doi: 10.1007/s11908-017-0595-4. Review. PubMed PMID: 28895024. 2: Lee CY, Huang CH, Lu PL, Ko WC, Chen YH, Hsueh PR. Role of rifampin for the treatment of bacterial infections other than mycobacteriosis. J Infect. 2017 Sep 1. pii: S0163-4453(17)30271-2. doi: 10.1016/j.jinf.2017.08.013. [Epub ahead of print] Review. PubMed PMID: 28870736. 3: Lange NW, Salerno DM, Berger K, Tsapepas DS. Using known drug interactions to manage supratherapeutic calcineurin inhibitor concentrations. Clin Transplant. 2017 Aug 30. doi: 10.1111/ctr.13098. [Epub ahead of print] Review. PubMed PMID: 28856745. 4: Nasiri MJ, Zamani S, Pormohammad A, Feizabadi MM, Aslani HR, Amin M, Halabian R, Imani Fooladi AA. The reliability of rifampicin resistance as a proxy for multidrug-resistant tuberculosis: a systematic review of studies from Iran. Eur J Clin Microbiol Infect Dis. 2017 Aug 19. doi: 10.1007/s10096-017-3079-4. [Epub ahead of print] Review. PubMed PMID: 28823010. 5: Shi TY, Zhang YF, Shi XH, Wen XH, Dong X, Meng J, Li HY, Yuan XX, Zheng Y, Lu YW. A rare case of meningoencephalitis by Listeria monocytogenes in systemic lupus erythematosus: case report and review. Clin Rheumatol. 2017 Aug 7. doi: 10.1007/s10067-017-3783-6. [Epub ahead of print] Review. PubMed PMID: 28785856. 6: Iacobino A, Piccaro G, Giannoni F, Mustazzolu A, Fattorini L. Fighting tuberculosis by drugs targeting nonreplicating Mycobacterium tuberculosis bacilli. Int J Mycobacteriol. 2017 Jul-Sep;6(3):213-221. doi: 10.4103/ijmy.ijmy_85_17. Review. PubMed PMID: 28776518. 7: Zenner D, Beer N, Harris RJ, Lipman MC, Stagg HR, van der Werf MJ. Treatment of Latent Tuberculosis Infection: An Updated Network Meta-analysis. Ann Intern Med. 2017 Aug 15;167(4):248-255. doi: 10.7326/M17-0609. Epub 2017 Aug 1. Review. PubMed PMID: 28761946. 8: Prasad R, Singh A, Balasubramanian V, Gupta N. Extensively drug-resistant tuberculosis in India: Current evidence on diagnosis & management. Indian J Med Res. 2017 Mar;145(3):271-293. doi: 10.4103/ijmr.IJMR_177_16. Review. PubMed PMID: 28749390; PubMed Central PMCID: PMC5555056. 9: Vergara Gómez A, González-Martín J, García-Basteiro AL. Xpert® MTB/RIF: Usefulness for the diagnosis of tuberculosis and resistance to rifampicin. Med Clin (Barc). 2017 Jul 21. pii: S0025-7753(17)30476-1. doi: 10.1016/j.medcli.2017.06.007. [Epub ahead of print] Review. English, Spanish. PubMed PMID: 28739268. 10: Handa R, Upadhyaya S, Kapoor S, Jois R, Pandey BD, Bhatnagar AK, Khanna A, Goyal V, Kumar K. Tuberculosis and biologics in rheumatology: India - A special situation. Int J Rheum Dis. 2017 Jul 21. doi: 10.1111/1756-185X.13129. [Epub ahead of print] Review. PubMed PMID: 28730751. 11: Bitan O, Wiener-Well Y, Segal R, Schwartz E. Mycetoma (Madura Foot) in Israel: Recent Cases and a Systematic Review of the Literature. Am J Trop Med Hyg. 2017 Jun;96(6):1355-1361. doi: 10.4269/ajtmh.16-0710. Review. PubMed PMID: 28719270; PubMed Central PMCID: PMC5462571. 12: Rahman MA, Sarkar A. Extensively Drug-resistant Tuberculosis (XDR-TB): A daunting challenge to the current End TB Strategy and policy recommendations. Indian J Tuberc. 2017 Jul;64(3):153-160. doi: 10.1016/j.ijtb.2017.03.006. Epub 2017 Apr 8. Review. PubMed PMID: 28709481. 13: Jean SS, Hsieh TC, Ning YZ, Hsueh PR. Role of vancomycin in the treatment of bacteraemia and meningitis caused by Elizabethkingia meningoseptica. Int J Antimicrob Agents. 2017 Jul 10. pii: S0924-8579(17)30270-4. doi: 10.1016/j.ijantimicag.2017.06.021. [Epub ahead of print] Review. PubMed PMID: 28705672. 14: Smith CS, Aerts A, Saunderson P, Kawuma J, Kita E, Virmond M. Multidrug therapy for leprosy: a game changer on the path to elimination. Lancet Infect Dis. 2017 Sep;17(9):e293-e297. doi: 10.1016/S1473-3099(17)30418-8. Epub 2017 Jul 7. Review. PubMed PMID: 28693853. 15: Criscuolo D. Postgraduate Courses in Pharmaceutical Medicine in Italy. Front Med (Lausanne). 2017 Jun 16;4:79. doi: 10.3389/fmed.2017.00079. eCollection 2017. Review. PubMed PMID: 28670578; PubMed Central PMCID: PMC5472953. 16: Pea F. Intracellular Pharmacokinetics of Antibacterials and Their Clinical Implications. Clin Pharmacokinet. 2017 Jun 21. doi: 10.1007/s40262-017-0572-y. [Epub ahead of print] Review. PubMed PMID: 28639230. 17: Nusrath Unissa A, Hanna LE. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis (Edinb). 2017 Jul;105:96-107. doi: 10.1016/j.tube.2017.04.008. Epub 2017 Apr 22. Review. PubMed PMID: 28610794. 18: Feng XQ, Zhu LL, Zhou Q. Opioid analgesics-related pharmacokinetic drug interactions: from the perspectives of evidence based on randomized controlled trials and clinical risk management. J Pain Res. 2017 May 24;10:1225-1239. doi: 10.2147/JPR.S138698. eCollection 2017. Review. PubMed PMID: 28579821; PubMed Central PMCID: PMC5449157. 19: Mohammadi M, Khayat H, Sayehmiri K, Soroush S, Sayehmiri F, Delfani S, Bogdanovic L, Taherikalani M. Synergistic Effect of Colistin and Rifampin Against Multidrug Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Open Microbiol J. 2017 Apr 28;11:63-71. doi: 10.2174/1874285801711010063. eCollection 2017. Review. PubMed PMID: 28553417; PubMed Central PMCID: PMC5427699. 20: Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM. New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Front Microbiol. 2017 Apr 25;8:681. doi: 10.3389/fmicb.2017.00681. eCollection 2017. Review. PubMed PMID: 28487675; PubMed Central PMCID: PMC5403904.