1: Xu X, Guo X, Song S, Wu A, Xu C, Kuang H, Liu L. Gold-based strip sensor for the rapid and sensitive detection of butralin in tomatoes and peppers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2022 Jul;39(7):1255-1264. doi: 10.1080/19440049.2022.2063391. Epub 2022 Apr 19. PMID: 35439101.
2: Gerent GG, Santana ER, Martins EC, Spinelli A. A non-mercury electrode for the voltammetric determination of butralin in foods. Food Chem. 2021 May 1;343:128419. doi: 10.1016/j.foodchem.2020.128419. Epub 2020 Oct 19. PMID: 33268170.
3: Yang L, Song X, Zhou X, Zhou Y, Zhou Y, Gong D, Luo H, Deng Y, Yang D, Chen L. Residual behavior and risk assessment of butralin in peanut fields. Environ Monit Assess. 2019 Dec 21;192(1):62. doi: 10.1007/s10661-019-8013-z. PMID: 31865452.
4: Monteiro MC, Winiarski JP, Santana ER, Szpoganicz B, Vieira IC. Ratiometric Electrochemical Sensor for Butralin Determination Using a Quinazoline-Engineered Prussian Blue Analogue. Materials (Basel). 2023 Jan 23;16(3):1024. doi: 10.3390/ma16031024. PMID: 36770031; PMCID: PMC9919488.
5: Li C, Liu R, Li L, Li W, He Y, Yuan L. Dissipation behavior and risk assessment of butralin in soybean and soil under field conditions. Environ Monit Assess. 2017 Aug 29;189(9):476. doi: 10.1007/s10661-017-6185-y. PMID: 28852899.
6: Ghatge S, Yang Y, Moon S, Song WY, Kim TY, Liu KH, Hur HG. A novel pathway for initial biotransformation of dinitroaniline herbicide butralin from a newly isolated bacterium Sphingopyxis sp. strain HMH. J Hazard Mater. 2021 Jan 15;402:123510. doi: 10.1016/j.jhazmat.2020.123510. Epub 2020 Jul 17. PMID: 32736179.
7: Chen Z, Kang S, Ren X, Cheng Y, Li W, Zhao L. Large-scale fate profiling of butralin between cultivated and processed garlics for multi-risk estimations. Sci Total Environ. 2023 May 15;873:162369. doi: 10.1016/j.scitotenv.2023.162369. Epub 2023 Feb 22. PMID: 36828059.
8: Refaie AA, Ramadan A, Sabry NM, Khalil WKB, Mossa AH. Over-gene expression in the apoptotic, oxidative damage and liver injure in female rats exposed to butralin. Environ Sci Pollut Res Int. 2020 Sep;27(25):31383-31393. doi: 10.1007/s11356-020-09416-6. Epub 2020 Jun 2. PMID: 32488703.
9: Refaie AA, Shalby AB, Kassem SM, Khalil WKB. DNA Damage and Expression Profile of Genes Associated with Nephrotoxicity Induced by Butralin and Ameliorating Effect of Arabic Gum in Female Rats. Appl Biochem Biotechnol. 2021 Nov;193(11):3454-3468. doi: 10.1007/s12010-021-03607-8. Epub 2021 Jul 9. PMID: 34240313.
10: Liu H, Ding C, Zhang S, Liu H, Liao X, Qu L, Zhao Y, Wu Y. Simultaneous residue measurement of pendimethalin, isopropalin, and butralin in tobacco using high-performance liquid chromatography with ultraviolet detection and electrospray ionization/mass spectrometric identification. J Agric Food Chem. 2004 Nov 17;52(23):6912-5. doi: 10.1021/jf0488965. PMID: 15537295.
11: Kim SH, Park S, Park E, Kim JH, Ghatge S, Hur HG, Rhee S. Structure and substrate specificity determinants of NfnB, a dinitroaniline herbicide- catabolizing nitroreductase from Sphingopyxis sp. strain HMH. J Biol Chem. 2021 Oct;297(4):101143. doi: 10.1016/j.jbc.2021.101143. Epub 2021 Aug 30. PMID: 34473996; PMCID: PMC8484813.
12: Ni H, Li N, Qian M, He J, Chen Q, Huang Y, Zou L, Long ZE, Wang F. Identification of a Novel Nitroreductase LNR and Its Role in Pendimethalin Catabolism in Bacillus subtilis Y3. J Agric Food Chem. 2019 Nov 20;67(46):12816-12823. doi: 10.1021/acs.jafc.9b04354. Epub 2019 Nov 12. PMID: 31675231.
13: Kalasekar SM, Zacharia E, Kessler N, Ducharme NA, Gustafsson JÅ, Kakadiaris IA, Bondesson M. Identification of environmental chemicals that induce yolk malabsorption in zebrafish using automated image segmentation. Reprod Toxicol. 2015 Aug 1;55:20-9. doi: 10.1016/j.reprotox.2014.10.022. Epub 2014 Nov 5. PMID: 25462786; PMCID: PMC4420717.
14: Ni HY, Wang F, Li N, Yao L, Dai C, He Q, He J, Hong Q. Pendimethalin Nitroreductase Is Responsible for the Initial Pendimethalin Degradation Step in Bacillus subtilis Y3. Appl Environ Microbiol. 2016 Nov 21;82(24):7052-7062. doi: 10.1128/AEM.01771-16. PMID: 27694234; PMCID: PMC5118916.
15: Cheng S, Lin R, Wang L, Qiu Q, Qu M, Ren X, Zong F, Jiang H, Yu C. Comparative susceptibility of thirteen selected pesticides to three different insect egg parasitoid Trichogramma species. Ecotoxicol Environ Saf. 2018 Dec 30;166:86-91. doi: 10.1016/j.ecoenv.2018.09.050. Epub 2018 Oct 8. PMID: 30248565.
16: Páleníková A, Martínez-Domínguez G, Arrebola FJ, Romero-González R, Hrouzková S, Garrido Frenich A. Occurrence of pesticide residues and transformation products in different types of dietary supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(6):849-56. doi: 10.1080/19440049.2015.1028481. Epub 2015 Apr 14. PMID: 25856415.
17: Pu CH, Lin SK, Chuang WC, Shyu TH. Modified QuEChERS method for 24 plant growth regulators in grapes using LC-MS/MS. J Food Drug Anal. 2018 Apr;26(2):637-648. doi: 10.1016/j.jfda.2017.08.001. Epub 2017 Sep 22. PMID: 29567233; PMCID: PMC9322231.
18: Wang X, Yang J, Zhao J, Zhou Z, DU X, Lu X. [Efficient enrichment of pesticides from environmental water samples by cobalt-nickel double metal hydroxide nanocage/multiwalled carbon nanotube composites]. Se Pu. 2022 Oct;40(10):910-920. Chinese. doi: 10.3724/SP.J.1123.2022.03011. PMID: 36222254; PMCID: PMC9577698.
19: Kimura K, Yokoyama K, Sato H, Nordin RB, Naing L, Kimura S, Okabe S, Maeno T, Kobayashi Y, Kitamura F, Araki S. Effects of pesticides on the peripheral and central nervous system in tobacco farmers in Malaysia: studies on peripheral nerve conduction, brain-evoked potentials and computerized posturography. Ind Health. 2005 Apr;43(2):285-94. doi: 10.2486/indhealth.43.285. PMID: 15895843.
20: Zweig G, Selim S, Hummel R, Mittelman A, Wright DP Jr, Law C Jr, Regelman E. Analytical survey of N-nitroso contaminants in pesticide products. IARC Sci Publ. 1980;(31):555-64. PMID: 7228279.