MedKoo Cat#: 526291 | Name: Pyrabactin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Pyrabactin is a plant growth inhibitor, acting as a seed-selective abscisic acid (ABA) agonist. Pyrabctin is a novel PYL agonist.

Chemical Structure

Pyrabactin
Pyrabactin
CAS#419538-69-5

Theoretical Analysis

MedKoo Cat#: 526291

Name: Pyrabactin

CAS#: 419538-69-5

Chemical Formula: C16H13BrN2O2S

Exact Mass: 375.9881

Molecular Weight: 377.26

Elemental Analysis: C, 50.94; H, 3.47; Br, 21.18; N, 7.43; O, 8.48; S, 8.50

Price and Availability

Size Price Availability Quantity
10mg USD 350.00
20mg USD 575.00
50mg USD 1,100.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Pyrabactin
IUPAC/Chemical Name
4-Bromo-N-(pyridin-2-ylmethyl)naphthalene-1-sulfonamide
InChi Key
GJSDYQXOSHKOGX-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H13BrN2O2S/c17-15-8-9-16(14-7-2-1-6-13(14)15)22(20,21)19-11-12-5-3-4-10-18-12/h1-10,19H,11H2
SMILES Code
O=S(C1=C2C=CC=CC2=C(Br)C=C1)(NCC3=NC=CC=C3)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Pyrabactin acts through pyrabactin resistance 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs.
In vitro activity:
In this study, pyrabactin was investigated for its differential functionality in modulating ABA signaling. Pyrabactin adopts a unique conformation when bound to OsPYL/RCAR3. It was observed that Phe125 in the OsPYL/RCAR subfamily I influenced the conformation and accessibility of pyrabactin, leading to decreased affinity for OsPYL/RCAR3. Reference: Plant Mol Biol. 2019 Jun;100(3):319-333. https://pubmed.ncbi.nlm.nih.gov/30941543/
In vivo activity:
This study demonstrated that lower concentrations of pyrabactin significantly increased root hydraulic conductivity (Lpr), along with the expression of plasma membrane intrinsic protein (ZmPIP) aquaporin genes and the abundance of ZmPIP2;1/2;2 proteins in maize. Pyrabactin's influence on Lpr was found to be mediated by modulation of ZmPIP at multiple levels, including transcriptional, translational, and post-translational (activity) regulation. Reference: Plant Physiol Biochem. 2015 Sep;94:28-34. https://pubmed.ncbi.nlm.nih.gov/26000467/

Preparing Stock Solutions

The following data is based on the product molecular weight 377.26 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Han S, Lee Y, Park EJ, Min MK, Lee Y, Kim TH, Kim BG, Lee S. Structural determinants for pyrabactin recognition in ABA receptors in Oryza sativa. Plant Mol Biol. 2019 Jun;100(3):319-333. doi: 10.1007/s11103-019-00862-6. Epub 2019 Apr 2. PMID: 30941543. 2. Fan W, Li J, Jia J, Wang F, Cao C, Hu J, Mu Z. Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner. Plant Physiol Biochem. 2015 Sep;94:28-34. doi: 10.1016/j.plaphy.2015.05.005. Epub 2015 May 15. PMID: 26000467. 3. Peskan-Berghöfer T, Vilches-Barro A, Müller TM, Glawischnig E, Reichelt M, Gershenzon J, Rausch T. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytol. 2015 Nov;208(3):873-86. doi: 10.1111/nph.13504. Epub 2015 Jun 15. PMID: 26075497.
In vitro protocol:
1. Han S, Lee Y, Park EJ, Min MK, Lee Y, Kim TH, Kim BG, Lee S. Structural determinants for pyrabactin recognition in ABA receptors in Oryza sativa. Plant Mol Biol. 2019 Jun;100(3):319-333. doi: 10.1007/s11103-019-00862-6. Epub 2019 Apr 2. PMID: 30941543.
In vivo protocol:
1. Fan W, Li J, Jia J, Wang F, Cao C, Hu J, Mu Z. Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner. Plant Physiol Biochem. 2015 Sep;94:28-34. doi: 10.1016/j.plaphy.2015.05.005. Epub 2015 May 15. PMID: 26000467. 2. Peskan-Berghöfer T, Vilches-Barro A, Müller TM, Glawischnig E, Reichelt M, Gershenzon J, Rausch T. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytol. 2015 Nov;208(3):873-86. doi: 10.1111/nph.13504. Epub 2015 Jun 15. PMID: 26075497.
1: Shah FA, Chen Z, Ni F, Kamal KA, Zhang J, Chen J, Ren J. ArNAC148 induces Acer rubrum leaf senescence by activating the transcription of the ABA receptor gene ArPYR13. Int J Biol Macromol. 2024 Sep 1;279(Pt 2):134950. doi: 10.1016/j.ijbiomac.2024.134950. Epub ahead of print. PMID: 39226982. 2: Zhou Z, Wang YQ, Zheng XN, Zhang XH, Ji LY, Han JY, Zuo ZC, Mo WL, Zhang L. Optimizing ABA-based chemically induced proximity for enhanced intracellular transcriptional activation and modification response to ABA. Sci China Life Sci. 2024 Aug 19. doi: 10.1007/s11427-024-2707-9. Epub ahead of print. PMID: 39172347. 3: Wang M, Kang S, Wang Z, Jiang S, Yang Z, Xie Z, Tang H. Genome-wide analysis of the PYL-PP2C-SnRK2s family in the ABA signaling pathway of pitaya reveals its expression profiles under canker disease stress. BMC Genomics. 2024 Aug 1;25(1):749. doi: 10.1186/s12864-024-10665-9. PMID: 39090531; PMCID: PMC11295335. 4: Xue G, He A, Yang H, Song L, Li H, Wu C, Ruan J. Genome-wide identification, abiotic stress, and expression analysis of PYL family in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) during grain development. BMC Plant Biol. 2024 Jul 30;24(1):725. doi: 10.1186/s12870-024-05447-0. PMID: 39080537; PMCID: PMC11287990. 5: Lan Y, Song Y, Liu M, Luo D. Genome-wide identification, phylogenetic, structural and functional evolution of the core components of ABA signaling in plant species: a focus on rice. Planta. 2024 Jul 22;260(3):58. doi: 10.1007/s00425-024-04475-2. PMID: 39039384. 6: Zdunek-Zastocka E, Michniewska B, Pawlicka A, Grabowska A. Cadmium Alters the Metabolism and Perception of Abscisic Acid in Pisum sativum Leaves in a Developmentally Specific Manner. Int J Mol Sci. 2024 Jun 14;25(12):6582. doi: 10.3390/ijms25126582. PMID: 38928288; PMCID: PMC11203977. 7: Fang Z, Zhang K, Li J, Ma J, Ye C. Construction of a Membrane Yeast Two- Hybrid Library and Screening of MsPYR1-Like Interacting Proteins in Malus sieversii. Mol Biotechnol. 2024 Jun 2. doi: 10.1007/s12033-024-01199-2. Epub ahead of print. PMID: 38824489. 8: Ndathe R, Kato N. Phosphatidic acid produced by phospholipase Dα1 and Dδ is incorporated into the internal membranes but not involved in the gene expression of RD29A in the abscisic acid signaling network in Arabidopsis thaliana. Front Plant Sci. 2024 Apr 12;15:1356699. doi: 10.3389/fpls.2024.1356699. PMID: 38681216; PMCID: PMC11045897. 9: Yoshida T, Mergner J, Yang Z, Liu J, Kuster B, Fernie AR, Grill E. Integrating multi-omics data reveals energy and stress signaling activated by abscisic acid in Arabidopsis. Plant J. 2024 Jul;119(2):1112-1133. doi: 10.1111/tpj.16765. Epub 2024 Apr 13. PMID: 38613775. 10: Wu X, Su T, Zhang S, Zhang Y, Wong CE, Ma J, Shao Y, Hua C, Shen L, Yu H. N6-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis. Nat Plants. 2024 Mar;10(3):469-482. doi: 10.1038/s41477-024-01638-7. Epub 2024 Mar 6. PMID: 38448725. 11: Yang L, Hu X, Ren M, Ma F, Fu J, Cui H. Stem-cell-expressed DEVIL-like small peptides maintain root growth under abiotic stress via abscisic acid signaling. Plant Physiol. 2024 Mar 29;194(4):2372-2386. doi: 10.1093/plphys/kiad659. PMID: 38096479. 12: Lovatto M, Gonçalves-Vidigal MC, Vaz Bisneta M, Calvi AC, Mazucheli J, Vidigal Filho PS, Miranda EGR, Melotto M. Responsiveness of Candidate Genes on CoPv01CDRK/PhgPv01CDRK Loci in Common Bean Challenged by Anthracnose and Angular Leaf Spot Pathogens. Int J Mol Sci. 2023 Nov 7;24(22):16023. doi: 10.3390/ijms242216023. PMID: 38003212; PMCID: PMC10671028. 13: Chen X, Zhao C, Yun P, Yu M, Zhou M, Chen ZH, Shabala S. Climate-resilient crops: Lessons from xerophytes. Plant J. 2024 Mar;117(6):1815-1835. doi: 10.1111/tpj.16549. Epub 2023 Nov 15. PMID: 37967090. 14: Zhao H, Ma L, Shen J, Zhou H, Zheng Y. S-nitrosylation of the transcription factor MYB30 facilitates nitric oxide-promoted seed germination in Arabidopsis. Plant Cell. 2024 Jan 30;36(2):367-382. doi: 10.1093/plcell/koad276. Erratum in: Plant Cell. 2024 Feb 26;36(3):794. doi: 10.1093/plcell/koad298. PMID: 37930821; PMCID: PMC10827312. 15: Liu Z, Zhang M, Wang L, Sun W, Li M, Feng C, Yang X. Genome-wide identification and expression analysis of PYL family genes and functional characterization of GhPYL8D2 under drought stress in Gossypium hirsutum. Plant Physiol Biochem. 2023 Oct;203:108072. doi: 10.1016/j.plaphy.2023.108072. Epub 2023 Oct 9. PMID: 37827043. 16: Mi W, Liu K, Liang G, Jia Z, Ma X, Ju Z, Liu W. Genome-wide identification and characterization of ABA receptor pyrabactin resistance 1-like protein (PYL) family in oat. PeerJ. 2023 Oct 2;11:e16181. doi: 10.7717/peerj.16181. PMID: 37810776; PMCID: PMC10552766. 17: Qin H, Yang W, Liu Z, Ouyang Y, Wang X, Duan H, Zhao B, Wang S, Zhang J, Chang Y, Jiang K, Yu K, Zhang X. Mitochondrial VOLTAGE-DEPENDENT ANION CHANNEL 3 regulates stomatal closure by abscisic acid signaling. Plant Physiol. 2024 Jan 31;194(2):1041-1058. doi: 10.1093/plphys/kiad516. PMID: 37772952. 18: Li Z, Shen Y, Beltrán J, Tian H, Bedewitz M, Wheeldon I, Whitehead TA, Cutler SR, Zhong W. High-Performance Cannabinoid Sensor Empowered by Plant Hormone Receptors and Antifouling Magnetic Nanorods. ACS Sens. 2023 Oct 27;8(10):3914-3922. doi: 10.1021/acssensors.3c01488. Epub 2023 Sep 22. PMID: 37737572; PMCID: PMC11288662. 19: Li H, Zhou Y, Qin X, Peng J, Han R, Lv Y, Li C, Qi L, Qu GP, Yang L, Li Y, Terzaghi W, Li Z, Qin F, Gong Z, Deng XW, Li J. Reconstitution of phytochrome A-mediated light modulation of the ABA signaling pathways in yeast. Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2302901120. doi: 10.1073/pnas.2302901120. Epub 2023 Aug 17. PMID: 37590408; PMCID: PMC10450666. 20: Hu X, Liang J, Wang W, Cai C, Ye S, Wang N, Han F, Wu Y, Zhu Q. Comprehensive genome-wide analysis of the DREB gene family in Moso bamboo (Phyllostachys edulis): evidence for the role of PeDREB28 in plant abiotic stress response. Plant J. 2023 Dec;116(5):1248-1270. doi: 10.1111/tpj.16420. Epub 2023 Aug 11. PMID: 37566437.