MedKoo Cat#: 540072 | Name: Cholesterol
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Cholesterol is endogenous sterol component of animal cell membranes and precursor to steroid hormones, bile acids, and vitamin D compounds. It is also involved in vesicular transport, nerve conduction, and antioxidative activity.

Chemical Structure

Cholesterol
Cholesterol
CAS#57-88-5

Theoretical Analysis

MedKoo Cat#: 540072

Name: Cholesterol

CAS#: 57-88-5

Chemical Formula: C27H46O

Exact Mass: 386.3549

Molecular Weight: 386.66

Elemental Analysis: C, 83.87; H, 11.99; O, 4.14

Price and Availability

Size Price Availability Quantity
5g USD 90.00 Ready to ship
10g USD 150.00 Ready to ship
25g USD 300.00 Ready to ship
50g USD 500.00 Ready to ship
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
AI3-03112; AI303112; AI3 03112 CCRIS 2834; CCRIS2834 CCRIS-2834; Cholesterin; HSDB 7106; HSDB7106; HSDB-7106; NSC 8798; NSC8798; NSC-8798
IUPAC/Chemical Name
(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol
InChi Key
HVYWMOMLDIMFJA-DPAQBDIFSA-N
InChi Code
InChI=1S/C27H46O/c1-18(2)7-6-8-19(3)23-11-12-24-22-10-9-20-17-21(28)13-15-26(20,4)25(22)14-16-27(23,24)5/h9,18-19,21-25,28H,6-8,10-17H2,1-5H3/t19-,21+,22+,23-,24+,25+,26+,27-/m1/s1
SMILES Code
CC(C)CCC[C@@H](C)[C@H]1CC[C@@]2([H])[C@]3([H])CC=C4C[C@@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C
Appearance
Solid powder
Purity
>95% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Certificate of Analysis
Safety Data Sheet (SDS)
Biological target:
Cholesterol is an endogenous estrogen-related receptor α (ERRα) agonist and the major sterol in mammals.
In vitro activity:
The possibility that cholesterol itself, by far the most abundant cellular sterol, might be endogenous Smo ligand in vertebrate Hh signaling was tested. It was first found that cholesterol binds SmoCRD, as demonstrated by the following results: 1) in a fluorescence polarization assay, cholesterol competed binding of BODIPY-cyclopamine to XSmo ectodomain (fig. 5A), with an apparent IC50 of 2.4 μM, which is within the range of physiological cholesterol concentration, cholesterol enhanced the thermal stability of XSmo ectodomain in a circular dichroism (CD) melting assay (fig. S6A), indicative of binding – this effect was similar to the thermostabilizing effect of known CRD-binding molecules like 20(S)-OHC and cyclopamine (fig. S6B); and 3) a novel cholesterol affinity resin was generated, in which the sterol moiety is attached to beads via a C-19 handle (fig. S6C); this resin bound XSmo ectodomain specifically (fig. S6D), demonstrating that the structural elements of cholesterol are sufficient for Smo binding, while any sterol hydroxylation or oxidation is not necessary. In all these binding experiments, the closely related analogue, cholestanol (fig. S1), was inactive, indicating the high specificity of SmoCRD for cholesterol. Cell. 2016 Aug 25; 166(5): 1176–1187.e14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035717/
In vivo activity:
Using pyruvate and malate as substrates of complex I, mitochondria from HC (cholesterol-enriched diet)-fed mice showed a significant reduction in mitochondrial performance and respiratory states compared to mitochondria from mice-fed control diet (Fig. 3A). In particular, HC feeding impaired ADP-stimulated state 3 respiration as well as the FCCP-induced maximal uncouplerstimulated respiration (state 3u) without significant change in state 4o respiration (Fig. 3B). These alterations were reflected in the respiratory control ratio (RCR) (state 3/state 4o) and uncoupling control ratio (UCR) (state 3u/state 4o), decreasing both in mitochondria from HC-fed mice (Fig. 3C). Similar analysis was performed using succinate plus rotenone to examine respiration through complex II. HC feeding impaired OCR from succinate plus rotenone with decreased state 3 and state 3u (Fig. 4A and B). In addition, HC feeding decreased succinate plus rotenone-driven state 4o respiration (Fig. 4B), which translated in unchanged RCR and UCR ratios (Fig. 4C). Thus, these findings indicate that in vivo mitochondrial cholesterol loading significantly impairs mitochondrial complex I and complex II-driven state 3 respiration Redox Biol. 2019 Jun; 24: 101214. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526464/
Solvent mg/mL mM comments
Solubility
DMSO 0.4 1.06
Ethanol 16.0 41.38
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 386.66 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, Salic A. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling. Cell. 2016 Aug 25;166(5):1176-1187.e14. doi: 10.1016/j.cell.2016.08.003. Epub 2016 Aug 18. PMID: 27545348; PMCID: PMC5035717. 2. Gioia M, Vindigni G, Testa B, Raniolo S, Fasciglione GF, Coletta M, Biocca S. Membrane Cholesterol Modulates LOX-1 Shedding in Endothelial Cells. PLoS One. 2015 Oct 23;10(10):e0141270. doi: 10.1371/journal.pone.0141270. PMID: 26495844; PMCID: PMC4619672. 3. Barbero-Camps E, Roca-Agujetas V, Bartolessis I, de Dios C, Fernández-Checa JC, Marí M, Morales A, Hartmann T, Colell A. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy. 2018;14(7):1129-1154. doi: 10.1080/15548627.2018.1438807. Epub 2018 Jun 4. PMID: 29862881; PMCID: PMC6103708. 4. Solsona-Vilarrasa E, Fucho R, Torres S, Nuñez S, Nuño-Lámbarri N, Enrich C, García-Ruiz C, Fernández-Checa JC. Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes. Redox Biol. 2019 Jun;24:101214. doi: 10.1016/j.redox.2019.101214. Epub 2019 May 9. PMID: 31108462; PMCID: PMC6526464.
In vitro protocol:
1. Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, Salic A. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling. Cell. 2016 Aug 25;166(5):1176-1187.e14. doi: 10.1016/j.cell.2016.08.003. Epub 2016 Aug 18. PMID: 27545348; PMCID: PMC5035717. 2. Gioia M, Vindigni G, Testa B, Raniolo S, Fasciglione GF, Coletta M, Biocca S. Membrane Cholesterol Modulates LOX-1 Shedding in Endothelial Cells. PLoS One. 2015 Oct 23;10(10):e0141270. doi: 10.1371/journal.pone.0141270. PMID: 26495844; PMCID: PMC4619672.
In vivo protocol:
1. Barbero-Camps E, Roca-Agujetas V, Bartolessis I, de Dios C, Fernández-Checa JC, Marí M, Morales A, Hartmann T, Colell A. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy. 2018;14(7):1129-1154. doi: 10.1080/15548627.2018.1438807. Epub 2018 Jun 4. PMID: 29862881; PMCID: PMC6103708. 2 Solsona-Vilarrasa E, Fucho R, Torres S, Nuñez S, Nuño-Lámbarri N, Enrich C, García-Ruiz C, Fernández-Checa JC. Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes. Redox Biol. 2019 Jun;24:101214. doi: 10.1016/j.redox.2019.101214. Epub 2019 May 9. PMID: 31108462; PMCID: PMC6526464.
1: Sniderman AD, Kiss RS, Reid T, Thanassoulis G, Watts GF. Statins, PCSK9 inhibitors and cholesterol homeostasis: a view from within the hepatocyte. Clin Sci (Lond). 2017 May 1;131(9):791-797. doi: 10.1042/CS20160872. PubMed PMID: 28424373. 2: Straniero S, Rosqvist F, Edholm D, Ahlström H, Kullberg J, Sundbom M, Risérus U, Rudling M. Acute caloric restriction counteracts hepatic bile acid and cholesterol deficiency in morbid obesity. J Intern Med. 2017 May;281(5):507-517. doi: 10.1111/joim.12599. Epub 2017 Mar 6. PubMed PMID: 28261926. 3: Sun XT, Zhang Y, Zheng DH, Yue S, Yang CG, Xu ZR. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles. Biosens Bioelectron. 2017 Jun 15;92:81-86. doi: 10.1016/j.bios.2017.02.008. Epub 2017 Feb 7. PubMed PMID: 28189069. 4: Hu X, Yang F, Liao Y, Li L, Zhang L. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations. Drug Deliv. 2017 Nov;24(1):121-132. doi: 10.1080/10717544.2016.1233590. PubMed PMID: 28156159. 5: Özer BO, Çete S. Development of a novel biosensor based on a polypyrrole-dodecylbenzene sulphonate (PPy-DBS) film for the determination of amperometric cholesterol. Artif Cells Nanomed Biotechnol. 2017 Jun;45(4):824-832. doi: 10.1080/21691401.2016.1178133. Epub 2016 Aug 30. PubMed PMID: 27571602. 6: Loh WP, Yang Y, Lam KP. miR-92a enhances recombinant protein productivity in CHO cells by increasing intracellular cholesterol levels. Biotechnol J. 2017 Apr;12(4). doi: 10.1002/biot.201600488. Epub 2017 Mar 15. PubMed PMID: 28146316. 7: Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017 Apr 14;292(15):6135-6147. doi: 10.1074/jbc.M116.753350. Epub 2017 Feb 17. PubMed PMID: 28213520; PubMed Central PMCID: PMC5391746. 8: Zhang Y, Xu J, Lou Y, Hu S, Yu K, Li R, Zhang X, Jin B, Han B. Pretreatment direct bilirubin and total cholesterol are significant predictors of overall survival in advanced non-small-cell lung cancer patients with EGFR mutations. Int J Cancer. 2017 Apr 1;140(7):1645-1652. doi: 10.1002/ijc.30581. Epub 2017 Jan 12. PubMed PMID: 28006834. 9: Zhang C, Zhang R, Li YM, Liang N, Zhao Y, Zhu H, He Z, Liu J, Hao W, Jiao R, Ma KY, Chen ZY. Cholesterol-Lowering Activity of Tartary Buckwheat Protein. J Agric Food Chem. 2017 Mar 8;65(9):1900-1906. doi: 10.1021/acs.jafc.7b00066. Epub 2017 Feb 24. PubMed PMID: 28199789. 10: Yokomichi H, Noda H, Nagai A, Hirata M, Tamakoshi A, Kamatani Y, Kiyohara Y, Matsuda K, Muto K, Ninomiya T, Kubo M, Nakamura Y; BioBank Japan Cooperative Hospital Group., Yamagata Z. Cholesterol levels of Japanese dyslipidaemic patients with various comorbidities: BioBank Japan. J Epidemiol. 2017 Mar;27(3S):S77-S83. doi: 10.1016/j.je.2016.12.014. Epub 2017 Feb 11. PubMed PMID: 28196738; PubMed Central PMCID: PMC5350591. 11: Jafurulla M, Nalli A, Chattopadhyay A. Membrane cholesterol oxidation in live cells enhances the function of serotonin(1A) receptors. Chem Phys Lipids. 2017 Mar;203:71-77. doi: 10.1016/j.chemphyslip.2017.01.005. Epub 2017 Jan 18. PubMed PMID: 28109756. 12: Sodi R, Eastwood J, Caslake M, Packard CJ, Denby L. Relationship between circulating microRNA-30c with total- and LDL-cholesterol, their circulatory transportation and effect of statins. Clin Chim Acta. 2017 Mar;466:13-19. doi: 10.1016/j.cca.2016.12.031. Epub 2017 Jan 3. PubMed PMID: 28062296. 13: Horikawa K, Hashimoto C, Kikuchi Y, Makita M, Fukudome SI, Okita K, Wada N, Oishi K. Wheat alkylresorcinols reduce micellar solubility of cholesterol in vitro and increase cholesterol excretion in mice. Nat Prod Res. 2017 Mar;31(5):578-582. doi: 10.1080/14786419.2016.1198347. Epub 2016 Jun 16. PubMed PMID: 27312999. 14: Eriksson I, Nath S, Bornefall P, Giraldo AM, Öllinger K. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation. Eur J Cell Biol. 2017 Mar;96(2):99-109. doi: 10.1016/j.ejcb.2017.01.002. Epub 2017 Jan 16. PubMed PMID: 28109635. 15: Cianciola NL, Chung S, Manor D, Carlin CR. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol. 2017 Feb 28;91(6). pii: e01904-16. doi: 10.1128/JVI.01904-16. Print 2017 Mar 15. PubMed PMID: 28077646; PubMed Central PMCID: PMC5331795. 16: Salmon VM, Castonguay F, Demers-Caron V, Leclerc P, Bailey JL. Cholesterol-loaded cyclodextrin improves ram sperm cryoresistance in skim milk-extender. Anim Reprod Sci. 2017 Feb;177:1-11. doi: 10.1016/j.anireprosci.2016.11.011. Epub 2016 Dec 1. PubMed PMID: 28017451. 17: Lim FT, Lim SM, Ramasamy K. Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 assimilate cholesterol and modulate ABCA1, CD36, NPC1L1 and SCARB1 in vitro. Benef Microbes. 2017 Feb 7;8(1):97-109. doi: 10.3920/BM2016.0048. Epub 2016 Dec 1. PubMed PMID: 27903090. 18: Dugardin C, Briand O, Touche V, Schonewille M, Moreau F, Le May C, Groen AK, Staels B, Lestavel S. Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia. Acta Diabetol. 2017 Feb;54(2):191-199. doi: 10.1007/s00592-016-0936-z. Epub 2016 Oct 28. PubMed PMID: 27796655. 19: Albuquerque A, Neves JA, Redondeiro M, Laranjo M, Félix MR, Freitas A, Tirapicos JL, Martins JM. Long term betaine supplementation regulates genes involved in lipid and cholesterol metabolism of two muscles from an obese pig breed. Meat Sci. 2017 Feb;124:25-33. doi: 10.1016/j.meatsci.2016.10.012. Epub 2016 Oct 27. PubMed PMID: 27806261. 20: Kimitsuki T. Cholesterol influences potassium currents in inner hair cells isolated from guinea pig cochlea. Auris Nasus Larynx. 2017 Feb;44(1):46-51. doi: 10.1016/j.anl.2016.04.010. Epub 2016 Jul 7. PubMed PMID: 27210104.