MedKoo Cat#: 525292 | Name: SM16
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

SM16 is a novel Type I TGF-β signaling inhibitor.

Chemical Structure

SM16
CAS#614749-78-9

Theoretical Analysis

MedKoo Cat#: 525292

Name: SM16

CAS#: 614749-78-9

Chemical Formula: C25H26N4O3

Exact Mass: 430.2005

Molecular Weight: 430.51

Elemental Analysis: C, 69.75; H, 6.09; N, 13.01; O, 11.15

Price and Availability

Size Price Availability Quantity
5mg USD 110.00 Ready to ship
10mg USD 190.00 Ready to ship
25mg USD 350.00 Ready to ship
50mg USD 550.00 Ready to ship
100mg USD 950.00 Ready to ship
200mg USD 1,650.00 Ready to ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
SM16; SM-16; SM 16.
IUPAC/Chemical Name
4-[4-(1,3-Benzodioxol-5-yl)-5-(6-methyl-2-pyridinyl)-1H-imidazol-2-yl]-bicyclo[2.2.2]octane-1-carboxamide
InChi Key
JUHTXZGCTPDXRU-UHFFFAOYSA-N
InChi Code
InChI=1S/C25H26N4O3/c1-15-3-2-4-17(27-15)21-20(16-5-6-18-19(13-16)32-14-31-18)28-23(29-21)25-10-7-24(8-11-25,9-12-25)22(26)30/h2-6,13H,7-12,14H2,1H3,(H2,26,30)(H,28,29)
SMILES Code
O=C(C1(CC2)CCC2(C3=NC(C4=CC=C(OCO5)C5=C4)=C(C6=NC(C)=CC=C6)N3)CC1)N
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Biological target:
SM16 is a ALK5/ALK4 kinase inhibitor with Kis of 10 and 1.5 nM, respectively.
In vitro activity:
Blocking TGF-β signaling with SM16 may be a valuable strategy to reduce Treg function and enhance anti-tumor responses. SM16 inhibited the generation of TGF-β-induced regulatory T cells (Tregs) without affecting overall CD4+ T cell populations. In vitro, SM16 prevented Treg generation but promoted the expansion of a CD4+CD25-Foxp3+ Treg-like cell population. Reference: Cancer Cell. 2009 Sep 8;16(3):183-94. https://pubmed.ncbi.nlm.nih.gov/19732719/
In vivo activity:
SM16 demonstrates potent activity against AB12 malignant mesothelioma, suggesting its potential for cancer treatment. In tumor-bearing mice, SM16 entered tumor cells, suppressing phosphorylated Smad2/3 levels for at least 3 hours. It significantly inhibited established AB12 tumor growth by inducing a CD8+ antitumor response. Treatment of mice bearing large tumors with SM16 after debulking surgery reduced the extent of tumor recurrence from 80% to <20%. Reference: Cancer Res. 2007 Mar 1;67(5):2351-9. https://pubmed.ncbi.nlm.nih.gov/17332368/
Solvent mg/mL mM comments
Solubility
DMSO 65.0 150.99
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 430.51 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Polanczyk MJ, Walker E, Haley D, Guerrouahen BS, Akporiaye ET. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4+CD25+Foxp3+ and CD4+CD25-Foxp3+ T cells. J Transl Med. 2019 Jul 9;17(1):219. doi: 10.1186/s12967-019-1967-3. PMID: 31288845; PMCID: PMC6617864. 2. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell. 2009 Sep 8;16(3):183-94. doi: 10.1016/j.ccr.2009.06.017. PMID: 19732719; PMCID: PMC2754404. 3. Fu K, Corbley MJ, Sun L, Friedman JE, Shan F, Papadatos JL, Costa D, Lutterodt F, Sweigard H, Bowes S, Choi M, Boriack-Sjodin PA, Arduini RM, Sun D, Newman MN, Zhang X, Mead JN, Chuaqui CE, Cheung HK, Zhang X, Cornebise M, Carter MB, Josiah S, Singh J, Lee WC, Gill A, Ling LE. SM16, an orally active TGF-beta type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):665-71. doi: 10.1161/ATVBAHA.107.158030. Epub 2008 Jan 17. PMID: 18202322. 4. Suzuki E, Kim S, Cheung HK, Corbley MJ, Zhang X, Sun L, Shan F, Singh J, Lee WC, Albelda SM, Ling LE. A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res. 2007 Mar 1;67(5):2351-9. doi: 10.1158/0008-5472.CAN-06-2389. PMID: 17332368.
In vitro protocol:
1. Polanczyk MJ, Walker E, Haley D, Guerrouahen BS, Akporiaye ET. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4+CD25+Foxp3+ and CD4+CD25-Foxp3+ T cells. J Transl Med. 2019 Jul 9;17(1):219. doi: 10.1186/s12967-019-1967-3. PMID: 31288845; PMCID: PMC6617864. 2. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell. 2009 Sep 8;16(3):183-94. doi: 10.1016/j.ccr.2009.06.017. PMID: 19732719; PMCID: PMC2754404.
In vivo protocol:
1. Fu K, Corbley MJ, Sun L, Friedman JE, Shan F, Papadatos JL, Costa D, Lutterodt F, Sweigard H, Bowes S, Choi M, Boriack-Sjodin PA, Arduini RM, Sun D, Newman MN, Zhang X, Mead JN, Chuaqui CE, Cheung HK, Zhang X, Cornebise M, Carter MB, Josiah S, Singh J, Lee WC, Gill A, Ling LE. SM16, an orally active TGF-beta type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):665-71. doi: 10.1161/ATVBAHA.107.158030. Epub 2008 Jan 17. PMID: 18202322. 2. Suzuki E, Kim S, Cheung HK, Corbley MJ, Zhang X, Sun L, Shan F, Singh J, Lee WC, Albelda SM, Ling LE. A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res. 2007 Mar 1;67(5):2351-9. doi: 10.1158/0008-5472.CAN-06-2389. PMID: 17332368.
1: Hudalla H, Bruckner T, Pöschl J, Strowitzki T, Kuon RJ. Antenatal exposure to fenoterol is not associated with the development of retinopathy of prematurity in infants born before 32 weeks of gestation. Arch Gynecol Obstet. 2020 Mar;301(3):687-692. doi: 10.1007/s00404-020-05463-z. Epub 2020 Feb 28. PMID: 32112180. 2: Pozzoli C, Bertini S, Poli E, Placenza G, Menozzi A. Relaxing effects of clenbuterol, ritodrine, salbutamol and fenoterol on the contractions of horse isolated bronchi induced by different stimuli. Res Vet Sci. 2020 Feb;128:43-48. doi: 10.1016/j.rvsc.2019.10.022. Epub 2019 Oct 31. PMID: 31710963. 3: Wongwaree S, Daengsuwan T. Comparison efficacy of randomized nebulized magnesium sulfate and ipratropium bromide/fenoterol in children with moderate to severe asthma exacerbation. Asian Pac J Allergy Immunol. 2019 Aug 18. doi: 10.12932/AP-190717-0118. Epub ahead of print. PMID: 31421659. 4: Omar MA, Hammad MA, Awad M. Utility of Europium ion characteristic peak for quantitation of Fenoterol hydrobromide and Salmeterol xinafoate in different matrices; application to stability studies. Spectrochim Acta A Mol Biomol Spectrosc. 2019 Jun 15;217:182-189. doi: 10.1016/j.saa.2019.03.072. Epub 2019 Mar 25. PMID: 30933783. 5: Stoiber B, Haslinger C, Schäffer MK, Zimmermann R, Schäffer L. Effect of dual tocolysis with fenoterol and atosiban in human myometrium. J Perinat Med. 2019 Feb 25;47(2):190-194. doi: 10.1515/jpm-2018-0010. PMID: 30218606. 6: Schulz D, Schlieckau F, Fill Malfertheiner S, Reuschel E, Seelbach-Göbel B, Ernst W. Effect of betamethasone, indomethacin and fenoterol on neonatal and maternal mononuclear cells stimulated with Escherichia coli. Cytokine. 2019 Apr;116:97-105. doi: 10.1016/j.cyto.2018.12.017. Epub 2019 Jan 28. PMID: 30703694. 7: Omar MA, Hammad MA, Awad M. New enhanced spectrofluorimetric approach for picogram detection of Fenoterol hydrobromide through Von Pechman synthesis of coumarins. Spectrochim Acta A Mol Biomol Spectrosc. 2018 Nov 5;204:702-707. doi: 10.1016/j.saa.2018.06.108. Epub 2018 Jul 2. PMID: 29982162. 8: Hudalla H, Karmen C, Bruckner T, Wallwiener S, Fluhr H, Michael Z, Freis A, Maul H, Strowitzki T, Pöschl J, Kuon RJ. Tocolysis with the β2-sympathomimetic fenoterol does not increase the occurrence of infantile hemangioma in preterm and term infants. Arch Gynecol Obstet. 2018 Sep;298(3):521-527. doi: 10.1007/s00404-018-4830-5. Epub 2018 Jun 25. PMID: 29938346. 9: Tzvetkov MV, Matthaei J, Pojar S, Faltraco F, Vogler S, Prukop T, Seitz T, Brockmöller J. Increased Systemic Exposure and Stronger Cardiovascular and Metabolic Adverse Reactions to Fenoterol in Individuals with Heritable OCT1 Deficiency. Clin Pharmacol Ther. 2018 May;103(5):868-878. doi: 10.1002/cpt.812. Epub 2017 Dec 8. PMID: 28791698. 10: Velzel J, Vlemmix F, Opmeer BC, Molkenboer JF, Verhoeven CJ, van Pampus MG, Papatsonis DN, Bais JM, Vollebregt KC, van der Esch L, Van der Post JA, Mol BW, Kok M. Atosiban versus fenoterol as a uterine relaxant for external cephalic version: randomised controlled trial. BMJ. 2017 Jan 26;356:i6773. doi: 10.1136/bmj.i6773. PMID: 28126898; PMCID: PMC5421458. 11: Śliwiński L, Cegieła U, Pytlik M, Folwarczna J, Janas A, Zbrojkiewicz M. Effects of fenoterol on the skeletal system depend on the androgen level. Pharmacol Rep. 2017 Apr;69(2):260-267. doi: 10.1016/j.pharep.2016.09.023. Epub 2016 Sep 29. PMID: 28126642. 12: Wang W, Chen J, Li XG, Xu J. Anti-inflammatory activities of fenoterol through β-arrestin-2 and inhibition of AMPK and NF-κB activation in AICAR- induced THP-1 cells. Biomed Pharmacother. 2016 Dec;84:185-190. doi: 10.1016/j.biopha.2016.09.044. Epub 2016 Sep 19. PMID: 27657826. 13: Fuchs T, Pomorski M, Grobelak K, Zimmer M. The T/QRS ratio values in pregnancies complicated by threatened preterm labour treated with intravenous infusions of fenoterol. J Perinat Med. 2015 Jul;43(4):467-72. doi: 10.1515/jpm-2014-0042. PMID: 25153544. 14: Wang W, Zhang Y, Xu M, Zhang YY, He B. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line. Biochem Biophys Res Commun. 2015 Jun 26;462(2):119-23. doi: 10.1016/j.bbrc.2015.04.097. Epub 2015 Apr 28. PMID: 25930996. 15: Reinartz MT, Kälble S, Wainer IW, Seifert R. Interaction of fenoterol stereoisomers with β2-adrenoceptor-G sα fusion proteins: antagonist and agonist competition binding. Naunyn Schmiedebergs Arch Pharmacol. 2015 May;388(5):517-24. doi: 10.1007/s00210-015-1086-5. Epub 2015 Jan 31. PMID: 25637582. 16: Reinartz MT, Kälble S, Littmann T, Ozawa T, Dove S, Kaever V, Wainer IW, Seifert R. Structure-bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol. 2015 Jan;388(1):51-65. doi: 10.1007/s00210-014-1054-5. Epub 2014 Oct 24. PMID: 25342094. 17: Tedesco D, Zanasi R, Wainer IW, Bertucci C. Stereochemical and conformational study on fenoterol by ECD spectroscopy and TD-DFT calculations. J Pharm Biomed Anal. 2014 Mar;91:92-6. doi: 10.1016/j.jpba.2013.12.018. Epub 2013 Dec 30. PMID: 24441217. 18: Plazinska A, Pajak K, Rutkowska E, Jimenez L, Kozocas J, Koolpe G, Tanga M, Toll L, Wainer IW, Jozwiak K. Comparative molecular field analysis of fenoterol derivatives interacting with an agonist-stabilized form of the β₂-adrenergic receptor. Bioorg Med Chem. 2014 Jan 1;22(1):234-46. doi: 10.1016/j.bmc.2013.11.030. Epub 2013 Nov 23. PMID: 24326276; PMCID: PMC3908673. 19: Orlovius AK, Guddat S, Gütschow M, Thevis M, Schänzer W. In vitro synthesis and characterisation of three fenoterol sulfoconjugates detected in fenoterol post-administration urine samples. Anal Bioanal Chem. 2013 Nov;405(29):9477-87. doi: 10.1007/s00216-013-7383-2. PMID: 24121469. 20: Plazinska A, Kolinski M, Wainer IW, Jozwiak K. Molecular interactions between fenoterol stereoisomers and derivatives and the β₂-adrenergic receptor binding site studied by docking and molecular dynamics simulations. J Mol Model. 2013 Nov;19(11):4919-30. doi: 10.1007/s00894-013-1981-y. Epub 2013 Sep 17. PMID: 24043542; PMCID: PMC3825559.