MedKoo Cat#: 329652 | Name: Fasentin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Fasentin is an inhibitor of glucose uptake, GluT1 inhibitor. Fasentin sensitizes cells to FAS-induced cell death. Fasentin selectively sensitized to death ligands, but did not decrease FLIP expression. It alters expression of genes associated with nutrient and glucose deprivation. Fasentin interacted with a unique site in the intracellular channel of the glucose transport protein GLUT1.

Chemical Structure

Fasentin
Fasentin
CAS#392721-37-8

Theoretical Analysis

MedKoo Cat#: 329652

Name: Fasentin

CAS#: 392721-37-8

Chemical Formula: C11H9ClF3NO2

Exact Mass: 279.0274

Molecular Weight: 279.64

Elemental Analysis: C, 47.25; H, 3.24; Cl, 12.68; F, 20.38; N, 5.01; O, 11.44

Price and Availability

Size Price Availability Quantity
25mg USD 450.00 2 Weeks
50mg USD 750.00 2 Weeks
100mg USD 1,250.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Fasentin
IUPAC/Chemical Name
N-[4-Chloro-3-(trifluoromethyl)phenyl]-3-oxobutanamide
InChi Key
GNYIJZMBLZXJEJ-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H9ClF3NO2/c1-6(17)4-10(18)16-7-2-3-9(12)8(5-7)11(13,14)15/h2-3,5H,4H2,1H3,(H,16,18)
SMILES Code
CC(CC(NC1=CC=C(Cl)C(C(F)(F)F)=C1)=O)=O
Appearance
White to Pale Yellow Solid
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
DMSO (Slightly), Methanol (Slightly)
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Fasentin, a potent glucose uptake inhibitor, inhibits GLUT-1/GLUT-4 transporters.
In vitro activity:
The results show that fasentin reduces the number of not only ECs, but also of tumour cells and, to a lesser extent, fibroblasts, not having a specific effect. Reference: Sci Rep. 2020 Apr 9;10(1):6132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145862/
In vivo activity:
Fasentin was able to impair angiogenesis in ovo with a dose of 50 nmol per disc, mainly observed by the apparent vessels rebounds close to the methylcellulose discs (never observed in the DMSO condition), as well as an alteration of the general pattern of vascularization in the CAM, compared to the regular and hierarchic network observed in the DMSO controls (Fig. 4a, right panel and Fig. S2). Reference: Sci Rep. 2020 Apr 9;10(1):6132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145862/
Solvent mg/mL mM
Solubility
DMSO 64.0 228.79
Ethanol 28.0 100.00
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 279.64 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Ocaña MC, Martínez-Poveda B, Marí-Beffa M, Quesada AR, Medina MÁ. Fasentin diminishes endothelial cell proliferation, differentiation and invasion in a glucose metabolism-independent manner. Sci Rep. 2020 Apr 9;10(1):6132. doi: 10.1038/s41598-020-63232-z. PMID: 32273578; PMCID: PMC7145862.
In vitro protocol:
1. Ocaña MC, Martínez-Poveda B, Marí-Beffa M, Quesada AR, Medina MÁ. Fasentin diminishes endothelial cell proliferation, differentiation and invasion in a glucose metabolism-independent manner. Sci Rep. 2020 Apr 9;10(1):6132. doi: 10.1038/s41598-020-63232-z. PMID: 32273578; PMCID: PMC7145862.
In vivo protocol:
1. Ocaña MC, Martínez-Poveda B, Marí-Beffa M, Quesada AR, Medina MÁ. Fasentin diminishes endothelial cell proliferation, differentiation and invasion in a glucose metabolism-independent manner. Sci Rep. 2020 Apr 9;10(1):6132. doi: 10.1038/s41598-020-63232-z. PMID: 32273578; PMCID: PMC7145862.
1: Winter J, Kunze R, Veit N, Kuerpig S, Meisenheimer M, Kraus D, Glassmann A, Probstmeier R. Targeting of Glucose Transport and the NAD Pathway in Neuroendocrine Tumor (NET) Cells Reveals New Treatment Options. Cancers (Basel). 2023 Feb 23;15(5):1415. doi: 10.3390/cancers15051415. PMID: 36900207; PMCID: PMC10001048. 2: Canonico F, Pedicino D, Severino A, Vinci R, Flego D, Pisano E, d'Aiello A, Ciampi P, Ponzo M, Bonanni A, De Ciutiis A, Russo S, Di Sario M, Angelini G, Szczepaniak P, Baldi A, Kapelak B, Wierzbicki K, Montone RA, D'Amario D, Massetti M, Guzik TJ, Crea F, Liuzzo G. GLUT-1/PKM2 loop dysregulation in patients with non-ST-segment elevation myocardial infarction promotes metainflammation. Cardiovasc Res. 2023 Dec 19;119(16):2653-2662. doi: 10.1093/cvr/cvac184. PMID: 36508576; PMCID: PMC10730239. 3: Yang M, Walker SA, Aguilar Díaz de León JS, Davidovich I, Broad K, Talmon Y, Borges CR, Wolfram J. Extracellular vesicle glucose transporter-1 and glycan features in monocyte-endothelial inflammatory interactions. Nanomedicine. 2022 Jun;42:102515. doi: 10.1016/j.nano.2022.102515. Epub 2022 Jan 22. PMID: 35074500. 4: Feng Y, Wang H, Chen Z, Chen B. High glucose mediates the ChREBP/p300 transcriptional complex to activate proapoptotic genes Puma and BAX and contributes to intervertebral disc degeneration. Bone. 2021 Dec;153:116164. doi: 10.1016/j.bone.2021.116164. Epub 2021 Aug 28. PMID: 34461288. 5: Ito A, Nasako H, Akizuki R, Takashina Y, Eguchi H, Matsunaga T, Yoshino Y, Endo S, Ikari A. Elevation of Chemosensitivity of Lung Adenocarcinoma A549 Spheroid Cells by Claudin-2 Knockdown through Activation of Glucose Transport and Inhibition of Nrf2 Signal. Int J Mol Sci. 2021 Jun 19;22(12):6582. doi: 10.3390/ijms22126582. PMID: 34205320; PMCID: PMC8235168. 6: Cao S, Chen Y, Ren Y, Feng Y, Long S. GLUT1 biological function and inhibition: research advances. Future Med Chem. 2021 Jul;13(14):1227-1243. doi: 10.4155/fmc-2021-0071. Epub 2021 May 21. PMID: 34018847. 7: Ocaña MC, Martínez-Poveda B, Marí-Beffa M, Quesada AR, Medina MÁ. Fasentin diminishes endothelial cell proliferation, differentiation and invasion in a glucose metabolism-independent manner. Sci Rep. 2020 Apr 9;10(1):6132. doi: 10.1038/s41598-020-63232-z. PMID: 32273578; PMCID: PMC7145862. 8: Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019 Dec;150:104511. doi: 10.1016/j.phrs.2019.104511. Epub 2019 Oct 31. PMID: 31678210. 9: Rogers RC, Burke SJ, Collier JJ, Ritter S, Hermann GE. Evidence that hindbrain astrocytes in the rat detect low glucose with a glucose transporter 2-phospholipase C-calcium release mechanism. Am J Physiol Regul Integr Comp Physiol. 2020 Jan 1;318(1):R38-R48. doi: 10.1152/ajpregu.00133.2019. Epub 2019 Oct 9. PMID: 31596114; PMCID: PMC6985801. 10: Guda MR, Labak CM, Omar SI, Asuthkar S, Airala S, Tuszynski J, Tsung AJ, Velpula KK. GLUT1 and TUBB4 in Glioblastoma Could be Efficacious Targets. Cancers (Basel). 2019 Sep 5;11(9):1308. doi: 10.3390/cancers11091308. PMID: 31491891; PMCID: PMC6771132. 11: Celentano A, McCullough M, Cirillo N. Glucocorticoids reduce chemotherapeutic effectiveness on OSCC cells via glucose-dependent mechanisms. J Cell Physiol. 2019 Mar;234(3):2013-2020. doi: 10.1002/jcp.27227. Epub 2018 Sep 21. PMID: 30240006. 12: Kraus D, Reckenbeil J, Veit N, Kuerpig S, Meisenheimer M, Beier I, Stark H, Winter J, Probstmeier R. Targeting glucose transport and the NAD pathway in tumor cells with STF-31: a re-evaluation. Cell Oncol (Dordr). 2018 Oct;41(5):485-494. doi: 10.1007/s13402-018-0385-5. Epub 2018 Jun 11. PMID: 29949049. 13: Lu J, Montgomery BK, Chatain GP, Bugarini A, Zhang Q, Wang X, Edwards NA, Ray-Chaudhury A, Merrill MJ, Lonser RR, Chittiboina P. Corticotropin releasing hormone can selectively stimulate glucose uptake in corticotropinoma via glucose transporter 1. Mol Cell Endocrinol. 2018 Jul 15;470:105-114. doi: 10.1016/j.mce.2017.10.003. Epub 2017 Oct 3. PMID: 28986303; PMCID: PMC5882598. 14: Choi HY, Park JH, Jang WB, Ji ST, Jung SY, Kim da Y, Kang S, Kim YJ, Yun J, Kim JH, Baek SH, Kwon SM. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker. Biomol Ther (Seoul). 2016 Jul 1;24(4):363-70. doi: 10.4062/biomolther.2016.097. PMID: 27350339; PMCID: PMC4930279. 15: Bhatt AN, Chauhan A, Khanna S, Rai Y, Singh S, Soni R, Kalra N, Dwarakanath BS. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells. BMC Cancer. 2015 May 1;15:335. doi: 10.1186/s12885-015-1368-9. PMID: 25925410; PMCID: PMC4425929. 16: Andrisse S, Koehler RM, Chen JE, Patel GD, Vallurupalli VR, Ratliff BA, Warren DE, Fisher JS. Role of GLUT1 in regulation of reactive oxygen species. Redox Biol. 2014 Mar 25;2:764-71. doi: 10.1016/j.redox.2014.03.004. PMID: 25101238; PMCID: PMC4116627. 17: Fumarola C, Caffarra C, La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D, Petronini PG, Bonelli MA. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat. 2013 Aug;141(1):67-78. doi: 10.1007/s10549-013-2668-x. Epub 2013 Aug 21. PMID: 23963659. 18: Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol. 2012 Nov;24(6):650-4. doi: 10.1097/CCO.0b013e328356da72. PMID: 22913968; PMCID: PMC6392426. 19: Wood TE, Dalili S, Simpson CD, Hurren R, Mao X, Saiz FS, Gronda M, Eberhard Y, Minden MD, Bilan PJ, Klip A, Batey RA, Schimmer AD. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther. 2008 Nov;7(11):3546-55. doi: 10.1158/1535-7163.MCT-08-0569. PMID: 19001437.