MedKoo Cat#: 329517 | Name: Pseudouridine
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Pseudouridine (abbreviated by the Greek letter psi- Ψ) is an isomer of the nucleoside uridine in which the uracil is attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond. It is the most prevalent of the over one hundred different modified nucleosides found in RNA. Ψ is found in all species and in many classes of RNA. Ψ is formed by enzymes called Ψ synthases, which post-transcriptionally isomerize specific uridine residues in RNA in a process termed pseudouridylation.

Chemical Structure

Pseudouridine
Pseudouridine
CAS#1445-07-4

Theoretical Analysis

MedKoo Cat#: 329517

Name: Pseudouridine

CAS#: 1445-07-4

Chemical Formula: C9H12N2O6

Exact Mass: 244.0695

Molecular Weight: 244.20

Elemental Analysis: C, 44.27; H, 4.95; N, 11.47; O, 39.31

Price and Availability

Size Price Availability Quantity
10mg USD 190.00
25mg USD 350.00
50mg USD 650.00
100mg USD 950.00
1g USD 2,850.00 2 Weeks
2g USD 4,250.00 2 Weeks
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Pseudouridine; NSC 162405; NSC-162405; NSC162405.
IUPAC/Chemical Name
5-[(2S,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)-oxolan-2-yl]-1H-pyrimidine-2,4-dione
InChi Key
PTJWIQPHWPFNBW-GBNDHIKLSA-N
InChi Code
InChI=1S/C9H12N2O6/c12-2-4-5(13)6(14)7(17-4)3-1-10-9(16)11-8(3)15/h1,4-7,12-14H,2H2,(H2,10,11,15,16)/t4-,5-,6-,7+/m1/s1
SMILES Code
O=C1NC(C([C@@H]2O[C@H](CO)[C@@H](O)[C@H]2O)=CN1)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Certificate of Analysis
Safety Data Sheet (SDS)
Biological target:
In rRNA and tRNA, pseudouridine can fine-tune and stabilize the regional structure and help maintain their functions in mRNA decoding, ribosome assembly, processing and translation.
In vitro activity:
Pseudouridine was previously thought to be absent in mRNAs, but this study reveals its presence in hundreds of sites. The majority of pseudouridines in mRNA are subject to regulation in response to environmental cues, shedding light on the potential for inducible mRNA modifications and their role in genetic code adaptation. Reference: Nature. 2014 Nov 6;515(7525):143-6. https://pubmed.ncbi.nlm.nih.gov/25192136/
In vivo activity:
In this study, pseudouridine modification occurs within living yeast cells and profoundly influences the decoding efficiency of tRNAs during protein synthesis. The presence or absence of pseudouridine modification, orchestrated by Pus1, has substantial consequences on the accurate recognition of specific codons, such as CAG and UAG, by tRNAs. Pseudouridine modification also plays a role in the competition among tRNAs with near-cognate codon recognition. Reference: Biomolecules. 2020 May 7;10(5):729. https://pubmed.ncbi.nlm.nih.gov/32392804/
Solvent mg/mL mM
Solubility
DMSO 125.0 511.88
Water 25.0 102.38
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 244.20 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Kim SH, Witte CP, Rhee S. Structural basis for the substrate specificity and catalytic features of pseudouridine kinase from Arabidopsis thaliana. Nucleic Acids Res. 2021 Jan 11;49(1):491-503. doi: 10.1093/nar/gkaa1144. PMID: 33290549; PMCID: PMC7797080. 2. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014 Nov 6;515(7525):143-6. doi: 10.1038/nature13802. Epub 2014 Sep 5. PMID: 25192136; PMCID: PMC4224642. 3. Khonsari B, Klassen R. Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in Saccharomyces cerevisiae. Biomolecules. 2020 May 7;10(5):729. doi: 10.3390/biom10050729. PMID: 32392804; PMCID: PMC7277083.
In vitro protocol:
1. Kim SH, Witte CP, Rhee S. Structural basis for the substrate specificity and catalytic features of pseudouridine kinase from Arabidopsis thaliana. Nucleic Acids Res. 2021 Jan 11;49(1):491-503. doi: 10.1093/nar/gkaa1144. PMID: 33290549; PMCID: PMC7797080. 2. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014 Nov 6;515(7525):143-6. doi: 10.1038/nature13802. Epub 2014 Sep 5. PMID: 25192136; PMCID: PMC4224642.
In vivo protocol:
1. Khonsari B, Klassen R. Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in Saccharomyces cerevisiae. Biomolecules. 2020 May 7;10(5):729. doi: 10.3390/biom10050729. PMID: 32392804; PMCID: PMC7277083.
1: Chang Y, Jin H, Cui Y, Yang F, Chen K, Kuang W, Huo C, Xu Z, Li Y, Lin A, Yang B, Liu W, Xie S, Zhou T. PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression. Clin Transl Med. 2024 Aug;14(8):e1811. doi: 10.1002/ctm2.1811. PMID: 39175405; PMCID: PMC11341916. 2: De Rosa M, Giampaoli O, Sciubba F, Marini F, Tranfo G, Sisto R, Miccheli A, Tricarico L, Fetoni AR, Spagnoli M. NMR-based metabolomics for investigating urinary profiles of metal carpentry workers exposed to welding fumes and volatile organic compounds. Front Public Health. 2024 Aug 7;12:1386441. doi: 10.3389/fpubh.2024.1386441. PMID: 39171307; PMCID: PMC11335539. 3: Zhang J, Xu L, Yan X, Hu J, Gao X, Zhao H, Geng M, Wang N, Hu S. Multiomics and machine learning-based analysis of pancancer pseudouridine modifications. Discov Oncol. 2024 Aug 20;15(1):361. doi: 10.1007/s12672-024-01093-y. PMID: 39162904; PMCID: PMC11335713. 4: Kothari SS, Shah J, Sharma V, Charaniya R, Parikh R, Vaniawala SN. Severe pulmonary arterial hypertension in congenital sideroblastic anemia from PUS1 mutation - a case report. BMC Med Genomics. 2024 Aug 15;17(1):213. doi: 10.1186/s12920-024-01983-8. PMID: 39148116; PMCID: PMC11325830. 5: Bhutia KL, Kisku A, Lap B, Sahni S, Arya M, Bhutia ND, Ahmad M, Chaturvedi R, Sudhan RA, Sharma VK. Insight into a region of chickpea (Cicer arietinum L.) Chromosome 2 revealed potential candidate genes linked to Foc4 Fusarium wilt resistance. Funct Plant Biol. 2024 Aug;51:FP24068. doi: 10.1071/FP24068. PMID: 39137292. 6: Li J, Sun F, He K, Zhang L, Meng J, Huang D, Zhang Y. Detection and Quantification of 5moU RNA Modification from Direct RNA Sequencing Data. Curr Genomics. 2024 May 31;25(3):212-225. doi: 10.2174/0113892029288843240402042529. Epub 2024 Apr 16. PMID: 39086998; PMCID: PMC11288159. 7: Miyazato P, Noguchi T, Ogawa F, Sugimoto T, Fauzyah Y, Sasaki R, Ebina H. 1mΨ influences the performance of various positive-stranded RNA virus-based replicons. Sci Rep. 2024 Jul 31;14(1):17634. doi: 10.1038/s41598-024-68617-y. PMID: 39085360; PMCID: PMC11292005. 8: Kuzmin IV, Soto Acosta R, Pruitt L, Wasdin PT, Kedarinath K, Hernandez KR, Gonzales KA, Hill K, Weidner NG, Mire C, Engdahl TB, Moon WJ, Popov V, Crowe JE Jr, Georgiev IS, Garcia-Blanco MA, Abbott RK, Bukreyev A. Comparison of uridine and N1-methylpseudouridine mRNA platforms in development of an Andes virus vaccine. Nat Commun. 2024 Jul 30;15(1):6421. doi: 10.1038/s41467-024-50774-3. PMID: 39080316; PMCID: PMC11289437. 9: Dahl LOS, Hak S, Braaen S, Molska A, Rodà F, Parot J, Wessel Ø, Fosse JH, Bjørgen H, Borgos SE, Rimstad E. Implementation of mRNA-Lipid Nanoparticle Technology in Atlantic Salmon (Salmo salar). Vaccines (Basel). 2024 Jul 18;12(7):788. doi: 10.3390/vaccines12070788. PMID: 39066426; PMCID: PMC11281423. 10: Jayakrishnan TT, Sangwan N, Barot SV, Farha N, Mariam A, Xiang S, Aucejo F, Conces M, Nair KG, Krishnamurthi SS, Schmit SL, Liska D, Rotroff DM, Khorana AA, Kamath SD. Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer. NPJ Precis Oncol. 2024 Jul 17;8(1):146. doi: 10.1038/s41698-024-00647-1. PMID: 39020083; PMCID: PMC11255257. 11: Zhao Y, Ma X, Ye C, Li W, Pajdzik K, Dai Q, Sun HL, He C. Pseudouridine Detection and Quantification Using Bisulfite Incorporation Hindered Ligation. ACS Chem Biol. 2024 Aug 16;19(8):1813-1819. doi: 10.1021/acschembio.4c00387. Epub 2024 Jul 16. PMID: 39014961. 12: Gunage R, Zon LI. Role of RNA modifications in blood development and regeneration. Exp Hematol. 2024 Jul 14:104279. doi: 10.1016/j.exphem.2024.104279. Epub ahead of print. PMID: 39009277. 13: He Z, Qiu W, Zhou H. Promoted Read-through and Mutation Against Pseudouridine-CMC by an Evolved Reverse Transcriptase. bioRxiv [Preprint]. 2024 Jul 3:2024.07.03.601893. doi: 10.1101/2024.07.03.601893. PMID: 39005393; PMCID: PMC11244976. 14: Lin TY, Kleemann L, Jeżowski J, Dobosz D, Rawski M, Indyka P, Ważny G, Mehta R, Chramiec-Głąbik A, Koziej Ł, Ranff T, Fufezan C, Wawro M, Kochan J, Bereta J, Leidel SA, Glatt S. The molecular basis of tRNA selectivity by human pseudouridine synthase 3. Mol Cell. 2024 Jul 11;84(13):2472-2489.e8. doi: 10.1016/j.molcel.2024.06.013. PMID: 38996458; PMCID: PMC11258540. 15: Schiksnis EC, Nicastro IA, Pasquinelli AE. Full-length direct RNA sequencing reveals extensive remodeling of RNA expression, processing and modification in aging Caenorhabditis elegans. bioRxiv [Preprint]. 2024 Jun 22:2024.06.18.599640. doi: 10.1101/2024.06.18.599640. PMID: 38948813; PMCID: PMC11213008. 16: Wu X, Wu Z, Xie Z, Huang H, Wang Y, Lv K, Yang H, Liu X. The role of EMG1 in lung adenocarcinoma progression: Implications for prognosis and immune cell infiltration. Int Immunopharmacol. 2024 Sep 10;138:112553. doi: 10.1016/j.intimp.2024.112553. Epub 2024 Jun 28. PMID: 38943975. 17: Li K, Peng J, Yi C. Sequencing methods and functional decoding of mRNA modifications. Fundam Res. 2023 Jun 1;3(5):738-748. doi: 10.1016/j.fmre.2023.05.010. PMID: 38933299; PMCID: PMC11197720. 18: Sioud M, Juzeniene A, Sæbøe-Larssen S. Exploring the Impact of mRNA Modifications on Translation Efficiency and Immune Tolerance to Self-Antigens. Vaccines (Basel). 2024 Jun 5;12(6):624. doi: 10.3390/vaccines12060624. PMID: 38932353; PMCID: PMC11209393. 19: Nian Z, Deng M, Ye L, Tong X, Xu Y, Xu Y, Chen R, Wang Y, Mao F, Xu C, Lu R, Mao Y, Xu H, Shen X, Xue X, Guo G. RNA epigenetic modifications in digestive tract cancers: Friends or foes. Pharmacol Res. 2024 Aug;206:107280. doi: 10.1016/j.phrs.2024.107280. Epub 2024 Jun 22. PMID: 38914382. 20: Schultz SK, Katanski CD, Halucha M, Peña N, Fahlman RP, Pan T, Kothe U. Modifications in the T arm of tRNA globally determine tRNA maturation, function, and cellular fitness. Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2401154121. doi: 10.1073/pnas.2401154121. Epub 2024 Jun 18. PMID: 38889150; PMCID: PMC11214086.