MedKoo Cat#: 328051 | Name: Adaptavir
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Adaptavir, also known as RAP-101, DAPTA, and mDAPTA, is a CCR5 receptor antagonist potentially for the treatment of HIV infection and HBV infection. DAPTA administration significantly decreased marble burying and repetitive behavior in BTBR mice. Additionally, DAPTA treatment inhibited CCR5+, CD4+CCR5+, CCR5+IL-6+, CCR5+IL-9+, CCR5+IL-17A+, CCR5+RORγT+, and upregulated CCR5+IL-10+, and CCR5+Foxp3+ production. DAPTA also downregulated IL-6, IL-9, IL-17A, and RORγT, and increased IL-10 and Foxp3 protein and mRNA expression. Therefore, DAPTA administration represents a potential treatment strategy for patients with ASD.

Chemical Structure

Adaptavir
CAS#106362-34-9

Theoretical Analysis

MedKoo Cat#: 328051

Name: Adaptavir

CAS#: 106362-34-9

Chemical Formula: C35H56N10O15

Exact Mass: 856.3927

Molecular Weight: 856.89

Elemental Analysis: C, 49.06; H, 6.59; N, 16.35; O, 28.01

Price and Availability

Size Price Availability Quantity
10mg USD 250.00 2 Weeks
25mg USD 450.00 2 Weeks
50mg USD 700.00 2 Weeks
100mg USD 1,150.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Adaptavir; RAP-101; D-Ala-1-peptide T-NH-2; DAPTA; mDAPTA; Monomeric (D-Alanine-1) Peptide T amide
IUPAC/Chemical Name
L-Threoninamide, D-alanyl-L-seryl-L-threonyl-L-threonyl-L-threonyl-L-asparaginyl-L-tyrosyl-
InChi Key
AKWRNBWMGFUAMF-ZESMOPTKSA-N
InChi Code
InChI=1S/C35H56N10O15/c1-13(36)29(54)41-22(12-46)32(57)43-26(16(4)49)34(59)45-27(17(5)50)35(60)44-25(15(3)48)33(58)40-21(11-23(37)52)30(55)39-20(10-18-6-8-19(51)9-7-18)31(56)42-24(14(2)47)28(38)53/h6-9,13-17,20-22,24-27,46-51H,10-12,36H2,1-5H3,(H2,37,52)(H2,38,53)(H,39,55)(H,40,58)(H,41,54)(H,42,56)(H,43,57)(H,44,60)(H,45,59)/t13-,14-,15-,16-,17-,20+,21+,22+,24+,25+,26+,27+/m1/s1
SMILES Code
C[C@@H](O)[C@@H](C(N)=O)NC([C@H](CC1=CC=C(O)C=C1)NC([C@H](CC(N)=O)NC([C@H]([C@H](O)C)NC([C@H]([C@H](O)C)NC([C@H]([C@H](O)C)NC([C@H](CO)NC([C@@H](C)N)=O)=O)=O)=O)=O)=O)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
DAPTA is a synthetic peptide, functions as a viral entry inhibitor by targeting selectively CCR5, and shows potent anti-HIV activities.
In vitro activity:
Fourteen days after HIV1 infection, p24 gag antigen production in the supernatants of HIV-1 BaL infected M/M was found to be drastically reduced in a dose-dependent manner in the presence of DAPTA, at concentrations ranging from 10-9–10-15 M. Figure 1A shows the results, expressed as a percentage compared with the positive control, in which M/M were infected with HIV-1 without DAPTA treatment (100%). The maximal viral inhibition observed was ~90% with 10-9 M DAPTA concentration. With another R5 HIV-1 strain, 81A, this study obtained comparable results. In 81A HIV-1-infected M/M, 14 days after infection ~97% viral inhibition is reached using 10-9 M DAPTA (Figure 1B). Comparable results were confirmed at day 21 after infection (data not shown). The presence of DAPTA (Figure 1C) is able to reduce the cytopathic effect, with a decrease in syncytia formation and aggregation of cells induced by R5 HIV-1 in M/M after 14 days of infection (Figure 1D). Reference: Antivir Chem Chemother. 2007;18(5):285-95. https://pubmed.ncbi.nlm.nih.gov/18046961/
In vivo activity:
The effect of DAPTA treatment on ASD-like behaviors was assessed by administering the marble burying and self-grooming tests to C57 mice treated with saline and DAPTA and BTBR mice treated with saline and DAPTA. All groups were scored for the number of marbles buried under the top of the bedding and for the time spent on self-grooming in the home cage. It was observed that saline treated BTBR (control) mice buried more marbles and had higher self-grooming scores than saline-treated (control) C57 mice (Table 1). DAPTA treatment of BTBR mice significantly decreased repetitive behavior in the marble burying and self-grooming test as compared to that of BTBR control mice (Table 1). Thus, DAPTA treatment resulted in a strongly improved repetitive behavior in BTBR mice (Table 2). Reference: Eur J Pharmacol. 2019 Mar 5;846:100-108. https://pubmed.ncbi.nlm.nih.gov/30658114/
Solvent mg/mL mM comments
Solubility
DMSO 75.0 87.53
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 856.89 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Pollicita M, Ruff MR, Pert CB, Polianova MT, Schols D, Ranazzi A, Perno CF, Aquaro S. Profound anti-HIV-1 activity of DAPTA in monocytes/macrophages and inhibition of CCR5-mediated apoptosis in neuronal cells. Antivir Chem Chemother. 2007;18(5):285-95. doi: 10.1177/095632020701800504. PMID: 18046961. 2. Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alotaibi MR, Alasmari AF, Alshammari MA, Al-Mazroua HA, Attia SM. DAPTA, a C-C chemokine receptor 5 (CCR5) antagonist attenuates immune aberrations by downregulating Th9/Th17 immune responses in BTBR T+ Itpr3tf/J mice. Eur J Pharmacol. 2019 Mar 5;846:100-108. doi: 10.1016/j.ejphar.2019.01.016. Epub 2019 Jan 15. PMID: 30658114.
In vitro protocol:
1. Pollicita M, Ruff MR, Pert CB, Polianova MT, Schols D, Ranazzi A, Perno CF, Aquaro S. Profound anti-HIV-1 activity of DAPTA in monocytes/macrophages and inhibition of CCR5-mediated apoptosis in neuronal cells. Antivir Chem Chemother. 2007;18(5):285-95. doi: 10.1177/095632020701800504. PMID: 18046961.
In vivo protocol:
1. Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alotaibi MR, Alasmari AF, Alshammari MA, Al-Mazroua HA, Attia SM. DAPTA, a C-C chemokine receptor 5 (CCR5) antagonist attenuates immune aberrations by downregulating Th9/Th17 immune responses in BTBR T+ Itpr3tf/J mice. Eur J Pharmacol. 2019 Mar 5;846:100-108. doi: 10.1016/j.ejphar.2019.01.016. Epub 2019 Jan 15. PMID: 30658114.
1: Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alotaibi MR, Alasmari AF, Alshammari MA, Al-Mazroua HA, Attia SM. DAPTA, a C-C chemokine receptor 5 (CCR5) antagonist attenuates immune aberrations by downregulating Th9/Th17 immune responses in BTBR T+ Itpr3tf/J mice. Eur J Pharmacol. 2019 Mar 5;846:100-108. doi: 10.1016/j.ejphar.2019.01.016. Epub 2019 Jan 15. PMID: 30658114. 2: Ruff MR, Polianova M, Yang QE, Leoung GS, Ruscetti FW, Pert CB. Update on D-ala-peptide T-amide (DAPTA): a viral entry inhibitor that blocks CCR5 chemokine receptors. Curr HIV Res. 2003 Jan;1(1):51-67. doi: 10.2174/1570162033352066. PMID: 15043212. 3: Mahmoud AG , Guedes da Silva MFC , Sokolnicki J , Smoleński P , Pombeiro AJL . Hydrosoluble Cu(i)-DAPTA complexes: synthesis, characterization, luminescence thermochromism and catalytic activity for microwave-assisted three-component azide-alkyne cycloaddition click reaction. Dalton Trans. 2018 May 29;47(21):7290-7299. doi: 10.1039/c8dt01232f. PMID: 29767654. 4: Wei L, Petryk J, Gaudet C, Kamkar M, Gan W, Duan Y, Ruddy TD. Development of an inflammation imaging tracer, 111In-DOTA-DAPTA, targeting chemokine receptor CCR5 and preliminary evaluation in an ApoE-/- atherosclerosis mouse model. J Nucl Cardiol. 2019 Aug;26(4):1169-1178. doi: 10.1007/s12350-018-1203-1. Epub 2018 Feb 7. PMID: 29417414. 5: Polianova MT, Ruscetti FW, Pert CB, Ruff MR. Chemokine receptor-5 (CCR5) is a receptor for the HIV entry inhibitor peptide T (DAPTA). Antiviral Res. 2005 Aug;67(2):83-92. doi: 10.1016/j.antiviral.2005.03.007. PMID: 16002156. 6: Pollicita M, Ruff MR, Pert CB, Polianova MT, Schols D, Ranazzi A, Perno CF, Aquaro S. Profound anti-HIV-1 activity of DAPTA in monocytes/macrophages and inhibition of CCR5-mediated apoptosis in neuronal cells. Antivir Chem Chemother. 2007;18(5):285-95. doi: 10.1177/095632020701800504. PMID: 18046961. 7: Guerrero E, Miranda S, Lüttenberg S, Fröhlich N, Koenen JM, Mohr F, Cerrada E, Laguna M, Mendía A. trans-thionate derivatives of Pt(II) and Pd(II) with water-soluble phosphane PTA and DAPTA ligands: antiproliferative activity against human ovarian cancer cell lines. Inorg Chem. 2013 Jun 3;52(11):6635-47. doi: 10.1021/ic4006746. Epub 2013 May 21. PMID: 23692403. 8: Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Shahid M, Al-Mazroua HA, As Sobeai HM, Alasmari AF, Alanazi MM, Alhamed AS, Aldossari AA, Attia SM. CC chemokine receptor 5 antagonist alleviates inflammation by regulating IFN-γ/IL-10 and STAT4/Smad3 signaling in a mouse model of autoimmune encephalomyelitis. Cell Immunol. 2022 Sep;379:104580. doi: 10.1016/j.cellimm.2022.104580. Epub 2022 Jul 20. PMID: 35872534. 9: Polianova MT, Ruscetti FW, Pert CB, Tractenberg RE, Leoung G, Strang S, Ruff MR. Antiviral and immunological benefits in HIV patients receiving intranasal peptide T (DAPTA). Peptides. 2003 Jul;24(7):1093-8. doi: 10.1016/s0196-9781(03)00176-1. PMID: 14499289. 10: Mahmoud AG, Guedes da Silva MFC, Śliwa EI, Smoleński P, Kuznetsov ML, Pombeiro AJL. Copper(II) and Sodium(I) Complexes based on 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-oxide: Synthesis, Characterization, and Catalytic Activity. Chem Asian J. 2018 Oct 4;13(19):2868-2880. doi: 10.1002/asia.201800799. Epub 2018 Aug 31. PMID: 29947049. 11: Liu Y, Woodard PK. Chemokine receptors: Key for molecular imaging of inflammation in atherosclerosis. J Nucl Cardiol. 2019 Aug;26(4):1179-1181. doi: 10.1007/s12350-018-1248-1. Epub 2018 Mar 7. PMID: 29516368; PMCID: PMC6128785. 12: Nowak-Sliwinska P, van Beijnum JR, Casini A, Nazarov AA, Wagnieres G, van den Bergh H, Dyson PJ, Griffioen AW. Organometallic ruthenium(II) arene compounds with antiangiogenic activity. J Med Chem. 2011 Jun 9;54(11):3895-902. doi: 10.1021/jm2002074. Epub 2011 May 16. PMID: 21534534. 13: Miranda S, Vergara E, Mohr F, de Vos D, Cerrada E, Mendía A, Laguna M. Synthesis, characterization, and in vitro cytotoxicity of some gold(I) and trans platinum(II) thionate complexes containing water-soluble PTA and DAPTA ligands. X-ray crystal structures of [Au(SC4H3N2)(PTA)], trans-[Pt(SC4H3N2)2(PTA)2], trans-[Pt(SC5H4N)2(PTA)2], and trans-[Pt(SC5H4N)2(DAPTA)2]. Inorg Chem. 2008 Jul 7;47(13):5641-8. doi: 10.1021/ic7021903. Epub 2008 Apr 30. PMID: 18447334. 14: Detering L, Abdilla A, Luehmann HP, Williams JW, Huang LH, Sultan D, Elvington A, Heo GS, Woodard PK, Gropler RJ, Randolph GJ, Hawker CJ, Liu Y. CC Chemokine Receptor 5 Targeted Nanoparticles Imaging the Progression and Regression of Atherosclerosis Using Positron Emission Tomography/Computed Tomography. Mol Pharm. 2021 Mar 1;18(3):1386-1396. doi: 10.1021/acs.molpharmaceut.0c01183. Epub 2021 Feb 16. PMID: 33591187; PMCID: PMC8737066. 15: Gao R, Fang Q, Zhang X, Xu Q, Ye H, Guo W, He J, Chen Y, Wang R, Wu Z, Yu J. R5 HIV-1 gp120 Activates p38 MAPK to Induce Rat Cardiomyocyte Injury by the CCR5 Coreceptor. Pathobiology. 2019;86(5-6):274-284. doi: 10.1159/000502238. Epub 2019 Oct 1. PMID: 31574524. 16: Luehmann HP, Pressly ED, Detering L, Wang C, Pierce R, Woodard PK, Gropler RJ, Hawker CJ, Liu Y. PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. J Nucl Med. 2014 Apr;55(4):629-34. doi: 10.2967/jnumed.113.132001. Epub 2014 Mar 3. PMID: 24591489; PMCID: PMC4255944. 17: Álvarez D, Menéndez MI, López R. Computational Design of Rhenium(I) Carbonyl Complexes for Anticancer Photodynamic Therapy. Inorg Chem. 2022 Jan 10;61(1):439-455. doi: 10.1021/acs.inorgchem.1c03130. Epub 2021 Dec 16. PMID: 34913679; PMCID: PMC8753654. 18: Raychaudhuri SK, Raychaudhuri SP, Farber EM. Anti-chemotactic activities of peptide-T: a possible mechanism of actions for its therapeutic effects on psoriasis. Int J Immunopharmacol. 1998 Nov;20(11):661-7. doi: 10.1016/s0192-0561(98)00020-4. PMID: 9848397. 19: Goodkin K, Vitiello B, Lyman WD, Asthana D, Atkinson JH, Heseltine PN, Molina R, Zheng W, Khamis I, Wilkie FL, Shapshak P. Cerebrospinal and peripheral human immunodeficiency virus type 1 load in a multisite, randomized, double- blind, placebo-controlled trial of D-Ala1-peptide T-amide for HIV-1-associated cognitive-motor impairment. J Neurovirol. 2006 Jun;12(3):178-89. doi: 10.1080/13550280600827344. PMID: 16877299. 20: Marker SC, MacMillan SN, Zipfel WR, Li Z, Ford PC, Wilson JJ. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water- Soluble Phosphines. Inorg Chem. 2018 Feb 5;57(3):1311-1331. doi: 10.1021/acs.inorgchem.7b02747. Epub 2018 Jan 11. PMID: 29323880; PMCID: PMC8117114.