MedKoo Cat#: 620110 | Name: Decyl-TPP bromide
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Decyl-TPP, also known as (1-Decyl)triphenylphosphonium bromide, decyTPP and dTPP, , may be used as intermediate for chemical synthesis, Decyl-TPP can be also used as an inactive control or as a reference to mitoquinone (MitoQ).

Chemical Structure

Decyl-TPP bromide
Decyl-TPP bromide
CAS#32339-43-8 (bromide)

Theoretical Analysis

MedKoo Cat#: 620110

Name: Decyl-TPP bromide

CAS#: 32339-43-8 (bromide)

Chemical Formula: C28H36BrP

Exact Mass: 0.0000

Molecular Weight: 483.47

Elemental Analysis: C, 69.56; H, 7.51; Br, 16.53; P, 6.41

Price and Availability

Size Price Availability Quantity
1g USD 70.00 Ready to ship
2g USD 125.00 Ready to ship
5g USD 280.00 Ready to ship
10g USD 500.00 Ready to ship
25g USD 1,150.00 Ready to ship
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Decyl-TPP; DecylTPP; Decyl TPP. (1-Decyl)triphenylphosphonium bromide; dTPP;
IUPAC/Chemical Name
(1-Decyl)triphenylphosphonium bromide
InChi Key
GVPLMQGXUUHCSB-UHFFFAOYSA-M
InChi Code
InChI=1S/C28H36P.BrH/c1-2-3-4-5-6-7-8-18-25-29(26-19-12-9-13-20-26,27-21-14-10-15-22-27)28-23-16-11-17-24-28;/h9-17,19-24H,2-8,18,25H2,1H3;1H/q+1;/p-1
SMILES Code
CCCCCCCCCC[P+](C1=CC=CC=C1)(C2=CC=CC=C2)C3=CC=CC=C3.[Br-]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Certificate of Analysis
Safety Data Sheet (SDS)
Biological target:
N/A
In vitro activity:
The same experiment was performed with each of the other decyl-polyhydroxybenzoates-TPP+ under study. The respective dose-response curves obtained showed similar results in terms of the concentration-dependence of their cytotoxic effects (Table I). It is noted that IC50 values for the decyl-polyhydroxybenzoates-TPP+ at 24 h of incubation are relatively similar between all compounds and cell lines, ranging from 6 to 15 μM (Table I). Nonetheless, while the four former cell lines evidenced a marked decrease in the IC50 values at 48 and 72 h, showing a range of between 2 and 5 μM and between 1 and 3 μM, respectively, the MDA-MB-231 cell line showed a minor shift in the IC50 values, with values of 10–13 μM, 8–12 μM, and 7–9 μM after 24, 48 and 72 h of incubation, respectively (Table I). Reference: Toxicol Appl Pharmacol. 2016 Oct 15;309:2-14. https://pubmed.ncbi.nlm.nih.gov/27554043/
In vivo activity:
N/A
Solvent mg/mL mM
Solubility
Soluble in DMSO 0.0 0.00
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 483.47 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Sandoval-Acuña C, Fuentes-Retamal S, Guzmán-Rivera D, Peredo-Silva L, Madrid-Rojas M, Rebolledo S, Castro-Castillo V, Pavani M, Catalán M, Maya JD, Jara JA, Parra E, Calaf GM, Speisky H, Ferreira J. Destabilization of mitochondrial functions as a target against breast cancer progression: Role of TPP(+)-linked-polyhydroxybenzoates. Toxicol Appl Pharmacol. 2016 Oct 15;309:2-14. doi: 10.1016/j.taap.2016.08.018. Epub 2016 Aug 20. PMID: 27554043. 2. Dunn EA, Roxburgh M, Larsen L, Smith RA, McLellan AD, Heikal A, Murphy MP, Cook GM. Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis. Bioorg Med Chem. 2014 Oct 1;22(19):5320-8. doi: 10.1016/j.bmc.2014.07.050. Epub 2014 Aug 7. PMID: 25150092.
In vitro protocol:
1. Sandoval-Acuña C, Fuentes-Retamal S, Guzmán-Rivera D, Peredo-Silva L, Madrid-Rojas M, Rebolledo S, Castro-Castillo V, Pavani M, Catalán M, Maya JD, Jara JA, Parra E, Calaf GM, Speisky H, Ferreira J. Destabilization of mitochondrial functions as a target against breast cancer progression: Role of TPP(+)-linked-polyhydroxybenzoates. Toxicol Appl Pharmacol. 2016 Oct 15;309:2-14. doi: 10.1016/j.taap.2016.08.018. Epub 2016 Aug 20. PMID: 27554043. 2. Dunn EA, Roxburgh M, Larsen L, Smith RA, McLellan AD, Heikal A, Murphy MP, Cook GM. Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis. Bioorg Med Chem. 2014 Oct 1;22(19):5320-8. doi: 10.1016/j.bmc.2014.07.050. Epub 2014 Aug 7. PMID: 25150092.
In vivo protocol:
N/A
1: Bulthuis EP, Einer C, Distelmaier F, Groh L, van Emst-de Vries SE, van de Westerlo E, van de Wal M, Wagenaars J, Rodenburg RJ, Smeitink JAM, Riksen NP, Willems PHGM, Adjobo-Hermans MJW, Zischka H, Koopman WJH. The decylTPP mitochondria-targeting moiety lowers electron transport chain supercomplex levels in primary human skin fibroblasts. Free Radic Biol Med. 2022 Aug 1;188:434-446. doi: 10.1016/j.freeradbiomed.2022.06.011. Epub 2022 Jun 17. PMID: 35718301. 2: Armstrong JA, Cash NJ, Morton JC, Tepikin AV, Sutton R, Criddle DN. Mitochondrial Targeting of Antioxidants Alters Pancreatic Acinar Cell Bioenergetics and Determines Cell Fate. Int J Mol Sci. 2019 Apr 5;20(7):1700. doi: 10.3390/ijms20071700. PMID: 30959771; PMCID: PMC6480340. 3: Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, Murphy MP, Dominiczak AF. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009 Aug;54(2):322-8. doi: 10.1161/HYPERTENSIONAHA.109.130351. Epub 2009 Jul 6. PMID: 19581509. 4: Ross MF, Prime TA, Abakumova I, James AM, Porteous CM, Smith RA, Murphy MP. Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Biochem J. 2008 May 1;411(3):633-45. doi: 10.1042/BJ20080063. PMID: 18294140. 5: Ojano-Dirain CP, Antonelli PJ. Prevention of gentamicin-induced apoptosis with the mitochondria-targeted antioxidant mitoquinone. Laryngoscope. 2012 Nov;122(11):2543-8. doi: 10.1002/lary.23593. Epub 2012 Sep 10. PMID: 22965463. 6: Jadidian A, Antonelli PJ, Ojano-Dirain CP. Evaluation of apoptotic markers in HEI-OC1 cells treated with gentamicin with and without the mitochondria-targeted antioxidant mitoquinone. Otol Neurotol. 2015 Mar;36(3):526-30. doi: 10.1097/MAO.0000000000000517. PMID: 25076226. 7: Mitchell T, Rotaru D, Saba H, Smith RA, Murphy MP, MacMillan-Crow LA. The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys. J Pharmacol Exp Ther. 2011 Mar;336(3):682-92. doi: 10.1124/jpet.110.176743. Epub 2010 Dec 15. Erratum in: J Pharmacol Exp Ther. 2012 Aug;342(2):596. PMID: 21159749; PMCID: PMC3382740. 8: Vilaseca M, García-Calderó H, Lafoz E, Ruart M, López-Sanjurjo CI, Murphy MP, Deulofeu R, Bosch J, Hernández-Gea V, Gracia-Sancho J, García-Pagán JC. Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. Liver Int. 2017 Jul;37(7):1002-1012. doi: 10.1111/liv.13436. Epub 2017 Apr 27. PMID: 28371136. 9: Amorim R, Magalhães CC, Benfeito S, Cagide F, Tavares LC, Santos K, Sardão VA, Datta S, Cortopassi GA, Baldeiras I, Jones JG, Borges F, Oliveira PJ, Teixeira J. Mitochondria dysfunction induced by decyl-TPP mitochondriotropic antioxidant based on caffeic acid AntiOxCIN6 sensitizes cisplatin lung anticancer therapy due to a remodeling of energy metabolism. Biochem Pharmacol. 2024 Jan;219:115953. doi: 10.1016/j.bcp.2023.115953. Epub 2023 Nov 29. PMID: 38036191. 10: Ojano-Dirain CP, Antonelli PJ, Le Prell CG. Mitochondria-targeted antioxidant MitoQ reduces gentamicin-induced ototoxicity. Otol Neurotol. 2014 Mar;35(3):533-9. doi: 10.1097/MAO.0000000000000192. PMID: 24518411.